Suppr超能文献

一种基于级联WHT-LWT变换的新型GFDM波形设计用于5G之后的无线通信

A Novel GFDM Waveform Design Based on Cascaded WHT-LWT Transform for the Beyond 5G Wireless Communications.

作者信息

Maraş Meryem, Ayvaz Elif Nur, Gömeç Meltem, Savaşcıhabeş Asuman, Özen Ali

机构信息

Department of Electrical and Electronics Engineering, Nuh Naci Yazgan University-HARGEM, Kayseri 38010, Turkey.

Tasarruf A. Ş., Gevhernesibe, İstasyon Cd. No:41/C, Kayseri 38010, Turkey.

出版信息

Sensors (Basel). 2021 Mar 5;21(5):1831. doi: 10.3390/s21051831.

Abstract

In this paper, a new WHT-LWT-GFDM waveform obtained by combining Walsh-Hadamard Transform (WHT), Lifting Wavelet Transform (LWT), and Generalized Frequency Division Multiplexing (GFDM) is presented for use in next-generation wireless communication systems. The proposed approach meets the requirement of 5th-generation (5G) and beyond communication schemes in terms of low latency, low peak-to-average-power ratio (PAPR), and low bit-error rate (BER). To verify the performance of the presented waveform, PAPR and BER simulation results were obtained in additive white Gaussian noise (AWGN) and flat Rayleigh fading channels, and the performance of the proposed system was compared with conventional Orthogonal Frequency Division Multiplexing (OFDM), GFDM, and Walsh-Hadamard transform-based GFDM (WHT-GFDM). Simulation results show that the proposed waveform achieves the best BER and PAPR performances and it provides considerable performance gains over the conventional waveforms.

摘要

本文提出了一种通过结合沃尔什-哈达玛变换(WHT)、提升小波变换(LWT)和广义频分复用(GFDM)获得的新型WHT-LWT-GFDM波形,用于下一代无线通信系统。所提出的方法在低延迟、低峰均功率比(PAPR)和低误码率(BER)方面满足了第五代(5G)及以后通信方案的要求。为了验证所提出波形的性能,在加性高斯白噪声(AWGN)和平坦瑞利衰落信道中获得了PAPR和BER仿真结果,并将所提出系统的性能与传统正交频分复用(OFDM)、GFDM以及基于沃尔什-哈达玛变换的GFDM(WHT-GFDM)进行了比较。仿真结果表明,所提出的波形实现了最佳的BER和PAPR性能,并且与传统波形相比提供了显著的性能提升。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ebb/7961672/4bc812147b58/sensors-21-01831-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验