Suppr超能文献

构造具有任意期望 girth 的 LDPC 码。

Constructing LDPC Codes with Any Desired Girth.

机构信息

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210046, China.

School of Internet, Anhui University, Hefei 230039, China.

出版信息

Sensors (Basel). 2021 Mar 12;21(6):2012. doi: 10.3390/s21062012.

Abstract

In wireless sensor networks, the reliability of communication can be greatly improved by applying low-density parity-check (LDPC) codes. Algorithms based on progressive-edge-growth (PEG) pattern and quasi-cyclic (QC) pattern are the mainstream approaches to constructing LDPC codes with good performance. However, these algorithms are not guaranteed to remove all short cycles to achieve the desired girth, and their excellent inputs are difficult to obtain. Herein, we propose an algorithm, which must be able to construct LDPC codes with the girth desired. In addition, the optimal input to the proposed algorithm is easy to find. Theoretical and experimental evidence of this study shows that the LDPC codes we construct have better decoding performance and less power consumption than the PEG-based and QC-based codes.

摘要

在无线传感器网络中,通过应用低密度奇偶校验(LDPC)码可以极大地提高通信的可靠性。基于渐进边增长(PEG)模式和准循环(QC)模式的算法是构建具有良好性能的 LDPC 码的主流方法。然而,这些算法并不能保证消除所有短环以达到所需的围长,并且它们的优秀输入很难获得。在这里,我们提出了一种算法,该算法必须能够构建具有所需围长的 LDPC 码。此外,所提出算法的最佳输入很容易找到。本研究的理论和实验证据表明,我们构建的 LDPC 码具有比基于 PEG 和 QC 的码更好的解码性能和更低的功耗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bd7/8000767/8f019f96ce33/sensors-21-02012-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验