Suppr超能文献

癌症信号通路:治疗靶点、联合治疗及新进展。

Signaling Pathways in Cancer: Therapeutic Targets, Combinatorial Treatments, and New Developments.

机构信息

Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.

出版信息

Cells. 2021 Mar 16;10(3):659. doi: 10.3390/cells10030659.

Abstract

Molecular alterations in cancer genes and associated signaling pathways are used to inform new treatments for precision medicine in cancer. Small molecule inhibitors and monoclonal antibodies directed at relevant cancer-related proteins have been instrumental in delivering successful treatments of some blood malignancies (e.g., imatinib with chronic myelogenous leukemia (CML)) and solid tumors (e.g., tamoxifen with ER positive breast cancer and trastuzumab for HER2-positive breast cancer). However, inherent limitations such as drug toxicity, as well as acquisition of de novo or acquired mechanisms of resistance, still cause treatment failure. Here we provide an up-to-date review of the successes and limitations of current targeted therapies for cancer treatment and highlight how recent technological advances have provided a new level of understanding of the molecular complexity underpinning resistance to cancer therapies. We also raise three basic questions concerning cancer drug discovery based on molecular markers and alterations of selected signaling pathways, and further discuss how combination therapies may become the preferable approach over monotherapy for cancer treatments. Finally, we consider novel therapeutic developments that may complement drug delivery and significantly improve clinical response and outcomes of cancer patients.

摘要

癌症基因和相关信号通路的分子改变被用于为癌症的精准医学提供新的治疗方法。针对相关癌症相关蛋白的小分子抑制剂和单克隆抗体在提供某些血液恶性肿瘤(例如慢性髓性白血病(CML)的伊马替尼)和实体瘤(例如 ER 阳性乳腺癌的他莫昔芬和 HER2 阳性乳腺癌的曲妥珠单抗)的成功治疗方面发挥了重要作用。然而,药物毒性等固有局限性以及新出现或获得的耐药机制仍然导致治疗失败。在这里,我们提供了对癌症治疗当前靶向治疗成功和局限性的最新综述,并强调了最近的技术进步如何为理解癌症治疗耐药性的分子复杂性提供了新的水平。我们还基于分子标记物和选定信号通路的改变提出了关于癌症药物发现的三个基本问题,并进一步讨论了联合治疗如何可能成为癌症治疗的首选方法,而不是单一疗法。最后,我们考虑了可能补充药物输送并显著改善癌症患者临床反应和结果的新型治疗方法的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e881/8002322/64045fb11449/cells-10-00659-g001.jpg

相似文献

2
Advances in HER2-Targeted Therapy: Novel Agents and Opportunities Beyond Breast and Gastric Cancer.
Clin Cancer Res. 2019 Apr 1;25(7):2033-2041. doi: 10.1158/1078-0432.CCR-18-2275. Epub 2018 Nov 15.
4
Old drugs, novel ways out: Drug resistance toward cytotoxic chemotherapeutics.
Drug Resist Updat. 2016 Sep;28:65-81. doi: 10.1016/j.drup.2016.07.001. Epub 2016 Jul 16.
6
Update on targeted cancer therapies, single or in combination, and their fine tuning for precision medicine.
Biomed Pharmacother. 2020 May;125:110009. doi: 10.1016/j.biopha.2020.110009. Epub 2020 Feb 25.
8
[Predictive biomarkers for tumor-relevant signaling pathways in molecular pathology].
Pathologe. 2014 Feb;35(1):93-105. doi: 10.1007/s00292-013-1798-6.
9
A systematic review of dual targeting in HER2-positive breast cancer.
Cancer Treat Rev. 2014 Mar;40(2):259-70. doi: 10.1016/j.ctrv.2013.09.002. Epub 2013 Sep 11.
10
Co-targeting estrogen receptor and HER2 pathways in breast cancer.
Breast. 2014 Feb;23(1):2-9. doi: 10.1016/j.breast.2013.09.006. Epub 2013 Oct 28.

引用本文的文献

2
Breaking the oncogenic alliance: advances in disrupting the MTDH-SND1 complex for cancer therapy.
RSC Adv. 2025 Aug 26;15(37):30165-30188. doi: 10.1039/d5ra04310g. eCollection 2025 Aug 22.
3
The Good, the Bad, or Both? Unveiling the Molecular Functions of LINC01133 in Tumors.
Noncoding RNA. 2025 Jul 30;11(4):58. doi: 10.3390/ncrna11040058.
4
Exploring the predictive "psycho-biomarkers" for checkpoint immunotherapy in cancer.
Front Immunol. 2025 Jul 21;16:1590670. doi: 10.3389/fimmu.2025.1590670. eCollection 2025.
6
Role of exosomal non‑coding RNAs in cancer‑associated fibroblast‑mediated therapy resistance (Review).
Int J Oncol. 2025 Aug;67(2). doi: 10.3892/ijo.2025.5774. Epub 2025 Jul 19.
7
molecular studies of Phosphinogold(I) thiocarbohydrate complexes: insights into multi-target anticancer mechanisms.
Front Chem. 2025 Jun 12;13:1533026. doi: 10.3389/fchem.2025.1533026. eCollection 2025.
8
Overcoming resistance mechanisms in cancer immunotherapy-novel approaches and combinations.
Naunyn Schmiedebergs Arch Pharmacol. 2025 Jun 11. doi: 10.1007/s00210-025-03963-w.

本文引用的文献

1
A venetoclax bench-to-bedside story.
Nat Cancer. 2021 Jan;2(1):3-5. doi: 10.1038/s43018-020-00165-6.
2
Neurobiology of Cancer: the Role of β-Adrenergic Receptor Signaling in Various Tumor Environments.
Int J Mol Sci. 2020 Oct 26;21(21):7958. doi: 10.3390/ijms21217958.
3
Control of Glucocorticoid Receptor Levels by PTEN Establishes a Failsafe Mechanism for Tumor Suppression.
Mol Cell. 2020 Oct 15;80(2):279-295.e8. doi: 10.1016/j.molcel.2020.09.027.
4
Small-molecule MDM2/X inhibitors and PROTAC degraders for cancer therapy: advances and perspectives.
Acta Pharm Sin B. 2020 Jul;10(7):1253-1278. doi: 10.1016/j.apsb.2020.01.003. Epub 2020 Jan 14.
5
Alterations in and promote clinical resistance to alpelisib plus aromatase inhibitors.
Nat Cancer. 2020 Apr;1(4):382-393. doi: 10.1038/s43018-020-0047-1. Epub 2020 Mar 23.
6
Olaparib for Metastatic Castration-Resistant Prostate Cancer. Reply.
N Engl J Med. 2020 Aug 27;383(9):891. doi: 10.1056/NEJMc2023199.
7
Discovering the anti-cancer potential of non-oncology drugs by systematic viability profiling.
Nat Cancer. 2020 Feb;1(2):235-248. doi: 10.1038/s43018-019-0018-6. Epub 2020 Jan 20.
8
Unbiased Proteomic Profiling Uncovers a Targetable GNAS/PKA/PP2A Axis in Small Cell Lung Cancer Stem Cells.
Cancer Cell. 2020 Jul 13;38(1):129-143.e7. doi: 10.1016/j.ccell.2020.05.003. Epub 2020 Jun 11.
9
RAS-targeted therapies: is the undruggable drugged?
Nat Rev Drug Discov. 2020 Aug;19(8):533-552. doi: 10.1038/s41573-020-0068-6. Epub 2020 Jun 11.
10
Intestinal microbiota: a new force in cancer immunotherapy.
Cell Commun Signal. 2020 Jun 10;18(1):90. doi: 10.1186/s12964-020-00599-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验