Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
Int J Mol Sci. 2021 Mar 22;22(6):3229. doi: 10.3390/ijms22063229.
Alternansucrase (ALT, EC 2.4.1.140) is a glucansucrase that can generate α-(1,3/1,6)-linked glucan from sucrose. Previously, the crystal structure of the first alternansucrase from NRRL B-1355 was successfully elucidated; it showed that alternansucrase might have two acceptor subsites (W675 and W543) responsible for the formation of alternating linked glucan. This work aimed to investigate the primary acceptor subsite (W675) by saturated mutagenesis using ABK-1 alternansucrase (ALT). The substitution of other residues led to loss of overall activity, and formation of an alternan polymer with a nanoglucan was maintained when W675 was replaced with other aromatic residues. Conversely, substitution by nonaromatic residues led to the synthesis of oligosaccharides. Mutations at W675 could potentially cause ALT to lose control of the acceptor molecule binding via maltose-acceptor reaction-as demonstrated by results from molecular dynamics simulations of the W675A variant. The formation of α-(1,2), α-(1,3), α-(1,4), and α-(1,6) linkages were detected from products of the W675A mutant. In contrast, the wild-type enzyme strictly synthesized α-(1,6) linkage on the maltose acceptor. This study examined the importance of W675 for transglycosylation, processivity, and regioselectivity of glucansucrases. Engineering glucansucrase active sites is one of the essential approaches to green tools for carbohydrate modification.
交替淀粉酶(ALT,EC 2.4.1.140)是一种能够从蔗糖中生成α-(1,3/1,6)-连接的葡聚糖的葡聚糖蔗糖酶。先前,成功阐明了来自 NRRL B-1355 的首个交替淀粉酶的晶体结构;它表明交替淀粉酶可能具有两个受体亚基(W675 和 W543),负责形成交替连接的葡聚糖。本工作旨在通过饱和诱变研究主要受体亚基(W675),使用 ABK-1 交替淀粉酶(ALT)进行研究。当 W675 被其他芳香族残基取代时,其他残基的取代导致整体活性丧失,并且保持形成纳米葡聚糖的交替聚合物。相反,非芳香族残基的取代导致寡糖的合成。W675 的突变可能导致 ALT 通过麦芽糖-受体反应失去对受体分子结合的控制-正如 W675A 变体的分子动力学模拟结果所证明的那样。从 W675A 突变体的产物中检测到α-(1,2)、α-(1,3)、α-(1,4)和α-(1,6)键的形成。相比之下,野生型酶在麦芽糖受体上严格合成α-(1,6)键。本研究考察了 W675 对转糖苷、过程性和葡聚糖蔗糖酶的区域选择性的重要性。工程化葡聚糖蔗糖酶活性位点是碳水化合物修饰的绿色工具的重要方法之一。