Suppr超能文献

氮氧化钛纳米颗粒的低温合成

Low-Temperature Synthesis of Titanium Oxynitride Nanoparticles.

作者信息

Jansen Felicitas, Hoffmann Andreas, Henkel Johanna, Rahimi Khosrow, Caumanns Tobias, Kuehne Alexander J C

机构信息

Institute of Organic and Macromolecular Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.

DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52076 Aachen, Germany.

出版信息

Nanomaterials (Basel). 2021 Mar 26;11(4):847. doi: 10.3390/nano11040847.

Abstract

The synthesis of transition metal oxynitrides is complicated by extreme reaction conditions such as high temperatures and/or high pressures. Here, we show an unprecedented solution-based synthesis of narrowly dispersed titanium oxynitride nanoparticles of cubic shape and average size of 65 nm. Their synthesis is performed by using titanium tetrafluoride and lithium nitride as precursors alongside trioctylphosphine oxide (TOPO) and cetrimonium bromide (CTAB) as stabilizers at temperatures as low as 250 °C. The obtained nanoparticles are characterized in terms of their shape and optical properties, as well as their crystalline rock-salt structure, as confirmed by XRD and HRTEM analysis. We also determine the composition and nitrogen content of the synthesized particles using XPS and EELS. Finally, we investigate the applicability of our titanium oxynitride nanoparticles by compounding them into carbon fiber electrodes to showcase their applicability in energy storage devices. Electrodes with titanium oxynitride nanoparticles exhibit increased capacity compared to the pure carbon material.

摘要

过渡金属氮氧化物的合成因高温和/或高压等极端反应条件而变得复杂。在此,我们展示了一种前所未有的基于溶液的合成方法,可合成出立方形状、平均尺寸为65 nm的窄分散氮氧化钛纳米颗粒。它们的合成是通过使用四氟化钛和氮化锂作为前驱体,同时使用三辛基氧化膦(TOPO)和十六烷基三甲基溴化铵(CTAB)作为稳定剂,在低至250°C的温度下进行的。通过XRD和HRTEM分析证实,所获得的纳米颗粒在形状、光学性质以及晶体岩盐结构方面得到了表征。我们还使用XPS和EELS确定了合成颗粒的组成和氮含量。最后,我们通过将氮氧化钛纳米颗粒复合到碳纤维电极中来研究其适用性,以展示它们在储能装置中的适用性。与纯碳材料相比,含有氮氧化钛纳米颗粒的电极表现出更高的容量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b98d/8065472/5d08987aad77/nanomaterials-11-00847-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验