Institute for Superconducting and Electronic Materials, University of Wollongong, Innovation Campus, North Wollongong, NSW 2500, Australia.
ACS Appl Mater Interfaces. 2013 Feb;5(3):691-6. doi: 10.1021/am302197y. Epub 2013 Jan 24.
The morphology and electronic structure of metal oxides, including TiO(2) on the nanoscale, definitely determine their electronic or electrochemical properties, especially those relevant to application in energy devices. For this purpose, a concept for controlling the morphology and electrical conductivity in TiO(2), based on tuning by electrospinning, is proposed. We found that the 1D TiO(2) nanofibers surprisingly gave higher cyclic retention than 0D nanopowder, and nitrogen doping in the form of TiO(2)N(x) also caused further improvement. This is due to higher conductivity and faster Li(+) diffusion, as confirmed by electrochemical impedance spectra. Our findings provide an effective and scalable solution for energy storage efficiency.
金属氧化物的形态和电子结构,包括纳米尺度的 TiO(2),肯定会决定它们的电子或电化学性能,特别是那些与能源设备应用相关的性能。为此,提出了一种基于静电纺丝调控的控制 TiO(2)形态和电导率的概念。我们发现,1D TiO(2)纳米纤维出人意料地比 0D 纳米粉末具有更高的循环保持率,而以 TiO(2)N(x)形式的氮掺杂也进一步提高了性能。这是由于更高的导电性和更快的 Li(+)扩散,这一点通过电化学阻抗谱得到了证实。我们的发现为提高储能效率提供了一种有效且可扩展的解决方案。