Department of Mechanical Engineering, MIT, Cambridge, Massachusetts 02139, USA.
Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.
Chaos. 2021 Mar;31(3):033137. doi: 10.1063/5.0037837.
Equations governing physico-chemical processes are usually known at microscopic spatial scales, yet one suspects that there exist equations, e.g., in the form of partial differential equations (PDEs), that can explain the system evolution at much coarser, meso-, or macroscopic length scales. Discovering those coarse-grained effective PDEs can lead to considerable savings in computation-intensive tasks like prediction or control. We propose a framework combining artificial neural networks with multiscale computation, in the form of equation-free numerics, for the efficient discovery of such macro-scale PDEs directly from microscopic simulations. Gathering sufficient microscopic data for training neural networks can be computationally prohibitive; equation-free numerics enable a more parsimonious collection of training data by only operating in a sparse subset of the space-time domain. We also propose using a data-driven approach, based on manifold learning (including one using the notion of unnormalized optimal transport of distributions and one based on moment-based description of the distributions), to identify macro-scale dependent variable(s) suitable for the data-driven discovery of said PDEs. This approach can corroborate physically motivated candidate variables or introduce new data-driven variables, in terms of which the coarse-grained effective PDE can be formulated. We illustrate our approach by extracting coarse-grained evolution equations from particle-based simulations with a priori unknown macro-scale variable(s) while significantly reducing the requisite data collection computational effort.
通常,控制物理化学过程的方程在微观空间尺度上是已知的,但人们怀疑存在一些方程,例如偏微分方程(PDE)形式的方程,可以解释更粗糙的介观或宏观长度尺度上的系统演化。发现这些粗粒度的有效 PDE 可以在计算密集型任务(如预测或控制)中节省大量计算。我们提出了一个结合人工神经网络和多尺度计算的框架,以无方程数值计算的形式,直接从微观模拟中发现这种宏观 PDE。收集足够的微观数据进行神经网络训练可能在计算上是不可行的;无方程数值计算通过仅在时空域的稀疏子集中进行操作,实现了更精简的训练数据收集。我们还提出了一种基于流形学习(包括一种基于分布的非归一化最优传输的概念,和一种基于分布的矩描述的方法)的数据驱动方法,以识别适合于数据驱动发现 PDE 的宏观变量。这种方法可以验证物理上合理的候选变量,或者引入新的基于数据驱动的变量,根据这些变量可以制定粗粒度的有效 PDE。我们通过从具有先验未知宏观变量的基于粒子的模拟中提取粗粒度的演化方程来说明我们的方法,同时大大减少了所需的数据收集计算工作量。