Suppr超能文献

通过机器学习从细粒度观测中得到粗尺度偏微分方程。

Coarse-scale PDEs from fine-scale observations via machine learning.

机构信息

Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.

Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA.

出版信息

Chaos. 2020 Jan;30(1):013141. doi: 10.1063/1.5126869.

Abstract

Complex spatiotemporal dynamics of physicochemical processes are often modeled at a microscopic level (through, e.g., atomistic, agent-based, or lattice models) based on first principles. Some of these processes can also be successfully modeled at the macroscopic level using, e.g., partial differential equations (PDEs) describing the evolution of the right few macroscopic observables (e.g., concentration and momentum fields). Deriving good macroscopic descriptions (the so-called "closure problem") is often a time-consuming process requiring deep understanding/intuition about the system of interest. Recent developments in data science provide alternative ways to effectively extract/learn accurate macroscopic descriptions approximating the underlying microscopic observations. In this paper, we introduce a data-driven framework for the identification of unavailable coarse-scale PDEs from microscopic observations via machine-learning algorithms. Specifically, using Gaussian processes, artificial neural networks, and/or diffusion maps, the proposed framework uncovers the relation between the relevant macroscopic space fields and their time evolution (the right-hand side of the explicitly unavailable macroscopic PDE). Interestingly, several choices equally representative of the data can be discovered. The framework will be illustrated through the data-driven discovery of macroscopic, concentration-level PDEs resulting from a fine-scale, lattice Boltzmann level model of a reaction/transport process. Once the coarse evolution law is identified, it can be simulated to produce long-term macroscopic predictions. Different features (pros as well as cons) of alternative machine-learning algorithms for performing this task (Gaussian processes and artificial neural networks) are presented and discussed.

摘要

复杂的物理化学过程的时空动力学通常基于第一性原理在微观水平上建模(例如通过原子、基于代理或晶格模型)。其中一些过程也可以在宏观水平上成功建模,例如使用描述少数几个宏观可观测量(例如浓度和动量场)演化的偏微分方程(PDE)。推导出良好的宏观描述(所谓的“封闭问题”)通常是一个需要对感兴趣的系统有深刻理解/直觉的耗时过程。数据科学的最新发展提供了从微观观测中有效提取/学习准确的宏观描述的替代方法,这些描述可以近似潜在的微观观测。在本文中,我们介绍了一种数据驱动的框架,用于通过机器学习算法从微观观测中识别不可用的粗尺度 PDE。具体来说,使用高斯过程、人工神经网络和/或扩散映射,所提出的框架揭示了相关宏观空间场及其时间演化(显式不可用的宏观 PDE 的右手边)之间的关系。有趣的是,可以发现几个同样能代表数据的选择。该框架将通过从反应/传输过程的细尺度晶格玻尔兹曼模型中提取的微观观测数据驱动的宏观浓度级 PDE 发现来进行说明。一旦确定了粗演化规律,就可以进行模拟以产生长期的宏观预测。对于执行此任务的替代机器学习算法(高斯过程和人工神经网络)的不同特征(优点和缺点)进行了介绍和讨论。

相似文献

4
Emergent Spaces for Coupled Oscillators.耦合振荡器的涌现空间。
Front Comput Neurosci. 2020 May 12;14:36. doi: 10.3389/fncom.2020.00036. eCollection 2020.
6
Equation-free multiscale computation: algorithms and applications.无方程多尺度计算:算法与应用
Annu Rev Phys Chem. 2009;60:321-44. doi: 10.1146/annurev.physchem.59.032607.093610.
8
Learning data-driven discretizations for partial differential equations.学习偏微分方程的数据驱动离散化。
Proc Natl Acad Sci U S A. 2019 Jul 30;116(31):15344-15349. doi: 10.1073/pnas.1814058116. Epub 2019 Jul 16.

本文引用的文献

1
Learning data-driven discretizations for partial differential equations.学习偏微分方程的数据驱动离散化。
Proc Natl Acad Sci U S A. 2019 Jul 30;116(31):15344-15349. doi: 10.1073/pnas.1814058116. Epub 2019 Jul 16.
2
Manifold learning for parameter reduction.用于参数约简的流形学习
J Comput Phys. 2019 Sep 1;392:419-431. doi: 10.1016/j.jcp.2019.04.015. Epub 2019 Apr 24.
4
Data-driven discovery of partial differential equations.基于数据驱动的偏微分方程发现。
Sci Adv. 2017 Apr 26;3(4):e1602614. doi: 10.1126/sciadv.1602614. eCollection 2017 Apr.
6
Equation-free multiscale computation: algorithms and applications.无方程多尺度计算:算法与应用
Annu Rev Phys Chem. 2009;60:321-44. doi: 10.1146/annurev.physchem.59.032607.093610.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验