Quandt Dennis, Kurz W, Micheuz P
Institute of Earth Sciences, NAWI Graz Geocenter, University of Graz, Graz, Austria.
Present Address: Division of Structural Geology and Tectonics, Institute of Applied Geosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany.
Int J Earth Sci. 2021;110(2):627-649. doi: 10.1007/s00531-020-01978-7. Epub 2021 Feb 13.
Based on the published data of pillow lava-hosted mineralized veins, this study compares post-magmatic fracturing, fluid flow, and secondary mineralization processes in the Troodos and Izu-Bonin supra-subduction zone (SSZ) and discusses the crucial factors for the development of distinct vein types. Thin section and cathodoluminescence petrography, Raman spectroscopy, fluid inclusion microthermometry, and trace element and isotope (Sr/Sr, δO, δC, Δ) geochemistry indicate that most veins consist of calcite that precipitated from pristine to slightly modified seawater at temperatures < 50 °C. In response to the mode of fracturing, fluid supply, and mineral growth dynamics, calcites developed distinct blocky (precipitation into fluid-filled fractures), syntaxial (crack and sealing), and antitaxial (diffusion-fed displacive growth) vein microtextures with vein type-specific geochemical signatures. Blocky veins predominate in all study areas, whereas syntaxial veins represent subordinate structures. Antitaxial veins occur in all study areas but are particularly abundant in the Izu-Bonin rear arc where the local geological setting was conducive of antitaxial veining. The temporal framework of major calcite veining coincides with the onset of extensional faulting in the respective areas and points to a tectonic control on veining. Thus, major calcite veining in the Troodos SSZ began contemporaneously with volcanic activity and extensional faulting and completed within ~ 10-20 Myr. This enabled deep seawater downflow and hydrothermal fluid upflow. In the Izu-Bonin forearc, reliable ages of vein calcites point to vein formation > 15 Myr after subduction initiation. Therefore, high-T mineralization (calcite, quartz, analcime) up to 230 °C is restricted to the Troodos SSZ.
基于枕状熔岩型矿化脉体的已发表数据,本研究对比了特罗多斯和伊豆 - 小笠原俯冲带(SSZ)岩浆期后破裂、流体流动及次生矿化过程,并讨论了不同脉体类型发育的关键因素。薄片和阴极发光岩相学、拉曼光谱、流体包裹体显微测温以及微量元素和同位素(Sr/Sr、δO、δC、Δ)地球化学分析表明,大多数脉体由方解石组成,这些方解石是在温度低于50°C的原始至略有变化的海水中沉淀形成的。根据破裂模式、流体供应和矿物生长动力学,方解石形成了独特的块状(沉淀于充满流体的裂缝中)、共轴(裂缝和封闭)和反轴(扩散供给的置换生长)脉体微观结构,具有特定脉体类型的地球化学特征。块状脉体在所有研究区域中占主导,而共轴脉体为次要构造。反轴脉体出现在所有研究区域,但在伊豆 - 小笠原弧后特别丰富,那里的局部地质环境有利于反轴脉体的形成。主要方解石脉化的时间框架与各区域伸展断层作用的开始时间一致,表明脉化受构造控制。因此,特罗多斯SSZ的主要方解石脉化与火山活动和伸展断层作用同时开始,并在约10 - 20百万年内完成。这使得深部海水向下流动和热液流体向上流动。在伊豆 - 小笠原弧前,脉体方解石的可靠年龄表明脉体形成于俯冲开始后超过15百万年。因此,高达230°C的高温矿化(方解石、石英、方沸石)仅限于特罗多斯SSZ。