Suppr超能文献

蓝细菌中的光形态建成包括蓝光下藻胆体丰度增加、近远红光下藻胆体解偶联以及特定波长的光保护策略。

Photomorphogenesis in the Picocyanobacterium Includes Increased Phycobilisome Abundance Under Blue Light, Phycobilisome Decoupling Under Near Far-Red Light, and Wavelength-Specific Photoprotective Strategies.

作者信息

Bernát Gábor, Zavřel Tomáš, Kotabová Eva, Kovács László, Steinbach Gábor, Vörös Lajos, Prášil Ondřej, Somogyi Boglárka, Tóth Viktor R

机构信息

Balaton Limnological Institute, Centre for Ecological Research, Tihany, Hungary.

Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia.

出版信息

Front Plant Sci. 2021 Mar 18;12:612302. doi: 10.3389/fpls.2021.612302. eCollection 2021.

Abstract

Photomorphogenesis is a process by which photosynthetic organisms perceive external light parameters, including light quality (color), and adjust cellular metabolism, growth rates and other parameters, in order to survive in a changing light environment. In this study we comprehensively explored the light color acclimation of , a common cyanobacterium in turbid freshwater shallow lakes, using nine different monochromatic growth lights covering the whole visible spectrum from 435 to 687 nm. According to incident light wavelength, cells performed great plasticity in terms of pigment composition, antenna size, and photosystem stoichiometry, to optimize their photosynthetic performance and to redox poise their intersystem electron transport chain. In spite of such compensatory strategies, , like other cyanobacteria, uses blue and near far-red light less efficiently than orange or red light, which involves moderate growth rates, reduced cell volumes and lower electron transport rates. Unfavorable light conditions, where neither chlorophyll nor phycobilisomes absorb light sufficiently, are compensated by an enhanced antenna size. Increasing the wavelength of the growth light is accompanied by increasing photosystem II to photosystem I ratios, which involve better light utilization in the red spectral region. This is surprisingly accompanied by a partial excitonic antenna decoupling, which was the highest in the cells grown under 687 nm light. So far, a similar phenomenon is known to be induced only by strong light; here we demonstrate that under certain physiological conditions such decoupling is also possible to be induced by weak light. This suggests that suboptimal photosynthetic performance of the near far-red light grown cells is due to a solid redox- and/or signal-imbalance, which leads to the activation of this short-term light acclimation process. Using a variety of photo-biophysical methods, we also demonstrate that under blue wavelengths, excessive light is quenched through orange carotenoid protein mediated non-photochemical quenching, whereas under orange/red wavelengths state transitions are involved in photoprotection.

摘要

光形态建成是光合生物感知外部光参数(包括光质(颜色))并调整细胞代谢、生长速率和其他参数的过程,以便在不断变化的光环境中生存。在本研究中,我们使用覆盖从435到687 nm整个可见光谱的九种不同单色生长光,全面探索了一种常见于浑浊淡水浅湖中的蓝藻对光色的适应性。根据入射光波长,该蓝藻细胞在色素组成、天线大小和光系统化学计量方面表现出很大的可塑性,以优化其光合性能并使其中间电子传递链达到氧化还原平衡。尽管有这些补偿策略,但与其他蓝藻一样,该蓝藻利用蓝光和近远红光的效率低于橙色或红色光,这导致生长速率适中、细胞体积减小和电子传递速率降低。叶绿素和藻胆体都不能充分吸收光的不利光条件,可通过增大天线大小来补偿。生长光波长的增加伴随着光系统II与光系统I比例的增加,这意味着在红色光谱区域有更好的光利用。令人惊讶的是,这伴随着部分激子天线解耦,在687 nm光下生长的细胞中这种解耦程度最高。到目前为止,类似的现象仅已知由强光诱导;在这里我们证明,在某些生理条件下,这种解耦也可能由弱光诱导。这表明近远红光下生长的该蓝藻细胞光合性能欠佳是由于稳定的氧化还原和/或信号失衡,这导致了这种短期光适应过程被激活。我们还使用各种光生物物理方法证明,在蓝光波长下,过量的光通过橙色类胡萝卜素蛋白介导的非光化学猝灭被猝灭,而在橙色/红色波长下,状态转换参与光保护。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9fd/8012758/d1a35df08036/fpls-12-612302-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验