Hsu Che-Yu, Xiao Furen, Liu Kao-Lang, Chen Ting-Li, Lee Yueh-Chou, Wang Weichung
Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.
National Taiwan University Cancer Center, Taipei, Taiwan.
Neurooncol Adv. 2020 Aug 25;2(1):vdaa100. doi: 10.1093/noajnl/vdaa100. eCollection 2020 Jan-Dec.
Brain metastasis velocity (BMV) predicts outcomes after initial distant brain failure (DBF) following upfront stereotactic radiosurgery (SRS). We developed an integrated model of clinical predictors and pre-SRS MRI-derived radiomic scores (R-scores) to identify high-BMV (BMV-H) patients upon initial identification of brain metastases (BMs).
In total, 256 patients with BMs treated with upfront SRS alone were retrospectively included. R-scores were built from 1246 radiomic features in 2 target volumes by using the Extreme Gradient Boosting algorithm to predict BMV-H groups, as defined by BMV at least 4 or leptomeningeal disease at first DBF. Two R-scores and 3 clinical predictors were integrated into a predictive clinico-radiomic (CR) model.
The related R-scores showed significant differences between BMV-H and low BMV (BMV-L), as defined by BMV less than 4 or no DBF ( < .001). Regression analysis identified BMs number, perilesional edema, and extracranial progression as significant predictors. The CR model using these 5 predictors achieved a bootstrapping corrected -index of 0.842 and 0.832 in the discovery and test sets, respectively. Overall survival (OS) after first DBF was significantly different between the CR-predicted BMV-L and BMV-H groups (median OS: 26.7 vs 13.0 months, = .016). Among patients with a diagnosis-specific graded prognostic assessment of 1.5-2 or 2.5-4, the median OS after initial SRS was 33.8 and 67.8 months for CR-predicted BMV-L, compared to 13.5 and 31.0 months for CR-predicted BMV-H ( < .001 and <.001), respectively.
Our CR model provides a novel approach showing good performance to predict BMV and clinical outcomes.
脑转移速度(BMV)可预测 upfront 立体定向放射外科治疗(SRS)后初始远处脑衰竭(DBF)的预后。我们开发了一种临床预测指标与 SRS 前 MRI 衍生的放射组学评分(R 评分)的综合模型,以在首次发现脑转移(BM)时识别高 BMV(BMV-H)患者。
共纳入 256 例仅接受 upfront SRS 治疗的 BM 患者。通过使用极端梯度提升算法,从 2 个靶体积中的 1246 个放射组学特征构建 R 评分,以预测 BMV-H 组,该组由首次 DBF 时 BMV 至少为 4 或软脑膜疾病定义。将两个 R 评分和 3 个临床预测指标整合到一个预测性临床放射组学(CR)模型中。
相关 R 评分在 BMV-H 和低 BMV(BMV-L)之间显示出显著差异,BMV-L 由 BMV 小于 4 或无 DBF 定义(P <.001)。回归分析确定 BM 数量、瘤周水肿和颅外进展为显著预测指标。使用这 5 个预测指标的 CR 模型在发现集和测试集中的自展校正 C 指数分别为 0.842 和 0.832。首次 DBF 后的总生存期(OS)在 CR 预测的 BMV-L 和 BMV-H 组之间有显著差异(中位 OS:26.7 个月对 13.0 个月,P =.016)。在诊断特异性分级预后评估为 1.5 - 2 或 2.5 - 4 的患者中,CR 预测的 BMV-L 患者初始 SRS 后的中位 OS 为 33.8 个月和 67.8 个月,而 CR 预测的 BMV-H 患者分别为 13.5 个月和 31.0 个月(P <.001 和 P <.001)。
我们的 CR 模型提供了一种新方法,在预测 BMV 和临床结果方面表现良好。