Suppr超能文献

分析肿瘤相邻正常组织的表达谱,建立并验证了一个基于 Hippo 相关基因的肝细胞癌预后模型。

Normal tissue adjacent to tumor expression profile analysis developed and validated a prognostic model based on Hippo-related genes in hepatocellular carcinoma.

机构信息

Department of Infectious Diseases, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.

Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.

出版信息

Cancer Med. 2021 May;10(9):3139-3152. doi: 10.1002/cam4.3890. Epub 2021 Apr 4.

Abstract

BACKGROUND

Hepatocellular carcinoma (HCC) is the most common malignant disease worldwide. Although the diagnosis and treatment of HCC have greatly improved in the recent years, there is still a lack of accurate methods to predict the prognosis of patients. Evidence has shown that Hippo signaling in tissues adjacent to HCC plays a significant role in HCC development. In the present study, we aimed to construct a model based on the expression of Hippo-related genes (HRGs) in tissues adjacent to HCC to predict the prognosis of HCC patients.

METHODS

Gene expression data of paired normal tissues adjacent to HCC (PNTAH) and clinical information were obtained from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. The HRG signature was constructed using four canonical Hippo-related pathways. Univariate Cox regression analysis was used to screen survival-related HRGs. LASSO and multivariate Cox regression analyses were used to construct the prognostic model. The true and false positive rates of the model were confirmed using receiver operating characteristic (ROC) analysis.

RESULTS

The prognostic model was constructed based on the expression levels of five HRGs (NF2, MYC, BIRC3, CSNK1E, and MINK1) in PNTAH. The mortality rate of HCC patients increased as the risk score determined by the model increased. Furthermore, the risk score was found to be an independent risk factor for the survival of patients. ROC analysis showed that the prognostic model had a better predictive value than the other conventional clinical parameters. Moreover, the reliability of the prognostic model was confirmed in TCGA-LIHC cohort. A nomogram was generated to predict patient survival. An exploration of the predictive value of the model in HCC tissues indicated that the model is PNTAH-specific.

CONCLUSIONS

We developed and validated a prognostic model based on the expression levels of five HRGs in PNTAH, and this model should be helpful in predicting the prognosis of patients with HCC.

摘要

背景

肝细胞癌(HCC)是全球最常见的恶性疾病。尽管近年来 HCC 的诊断和治疗有了很大的提高,但仍然缺乏准确的方法来预测患者的预后。有证据表明,HCC 组织旁的 Hippo 信号在 HCC 发展中起着重要作用。在本研究中,我们旨在构建一个基于 HCC 组织旁 Hippo 相关基因(HRGs)表达的模型,以预测 HCC 患者的预后。

方法

从基因表达综合数据库(GEO)和癌症基因组图谱(TCGA)数据库中获取 HCC 组织旁配对正常组织(PNTAH)的基因表达数据和临床信息。使用四个经典的 Hippo 相关途径构建 HRG 特征。使用单因素 Cox 回归分析筛选与生存相关的 HRGs。LASSO 和多因素 Cox 回归分析用于构建预后模型。使用接收者操作特征(ROC)分析来验证模型的真阳性率和假阳性率。

结果

该模型基于 PNTAH 中 5 个 HRGs(NF2、MYC、BIRC3、CSNK1E 和 MINK1)的表达水平构建。随着模型确定的风险评分的增加,HCC 患者的死亡率增加。此外,风险评分被发现是患者生存的独立危险因素。ROC 分析表明,该预后模型比其他常规临床参数具有更好的预测价值。此外,在 TCGA-LIHC 队列中验证了该预后模型的可靠性。生成了一个列线图来预测患者的生存。对模型在 HCC 组织中的预测价值的探索表明,该模型是 PNTAH 特异性的。

结论

我们开发并验证了一个基于 PNTAH 中 5 个 HRGs 表达水平的预后模型,该模型有助于预测 HCC 患者的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d75/8085948/19f07466c22e/CAM4-10-3139-g007.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验