Suppr超能文献

疟原虫中的氨基酸代谢与蛋白质合成

Amino acid metabolism and protein synthesis in malarial parasites.

作者信息

Sherman I W

出版信息

Bull World Health Organ. 1977;55(2-3):265-76.

Abstract

Malaria-infected red cells and free parasites have limited capabilities for the biosynthesis of amino acids. Therefore, the principal amino acid sources for parasite protein synthesis are the plasma free amino acids and host cell haemoglobin. Infected cells and plasmodia incorporate exogenously supplied amino acids into protein. However, the hypothesis that amino acid utilization (from an external source) is related to availability of that amino acid in haemoglobin is without universal support: it is true for isoleucine and for Plasmodium knowlesi and P. falciparum, but not for methionine, cysteine, and other amino acids, and it does not apply to P. lophurae. More by default than by direct evidence, haemoglobin is believed to be the main amino acid reservoir available to the intraerythrocytic plasmodium. Haemoglobin, ingested via the cytostome, is held in food vacuoles where auto-oxidation takes place. As a consequence, haem is released and accumulates in the vacuole as particulate haemozoin (= malaria pigment). Current evidence favours the view that haemozoin is mainly haematin. Acid and alkaline proteases (identified in crude extracts from mammalian and avian malarias) are presumably secreted directly into the food vacuole. They then digest the denatured globin and the resulting amino acids are incorporated into parasite protein. Cell-free protein synthesizing systems have been developed using P. knowlesi and P. lophurae ribosomes. In the main these systems are typically eukaryotic.Studies of amino acid metabolism are exceedingly limited. Arginine, lysine, methionine, and proline are incorporated into protein, whereas glutamic acid is metabolized via an NADP-specific glutamic dehydrogenase. Glutamate oxidation generates NADPH and auxiliary energy (in the form of alpha-ketoglutarate). The role of red cell glutathione in the economy of the parasite remains obscure. Important goals for future research should be: quantitative assessment of the relative importance of amino acid sources for parasite protein synthesis; purification and characterization of plasmodial proteinases; and in vitro translation of parasite messenger RNA.

摘要

感染疟疾的红细胞和游离寄生虫的氨基酸生物合成能力有限。因此,寄生虫蛋白质合成的主要氨基酸来源是血浆游离氨基酸和宿主细胞血红蛋白。受感染的细胞和疟原虫会将外源供应的氨基酸掺入蛋白质中。然而,关于氨基酸利用(来自外部来源)与血红蛋白中该氨基酸可用性相关的假设并未得到普遍支持:异亮氨酸以及诺氏疟原虫和恶性疟原虫的情况确实如此,但蛋氨酸、半胱氨酸和其他氨基酸并非如此,而且它不适用于约氏疟原虫。更多是由于默认而非直接证据,血红蛋白被认为是红细胞内疟原虫可利用的主要氨基酸储存库。通过胞口摄取的血红蛋白被保存在食物泡中,在那里发生自氧化。结果,血红素被释放并以颗粒状疟色素(= 疟疾色素)的形式在液泡中积累。目前的证据支持疟色素主要是高铁血红素的观点。酸性和碱性蛋白酶(在哺乳动物和禽类疟疾的粗提物中鉴定出)可能直接分泌到食物泡中。然后它们消化变性的珠蛋白,产生的氨基酸被掺入寄生虫蛋白质中。已经利用诺氏疟原虫和约氏疟原虫的核糖体开发了无细胞蛋白质合成系统。这些系统主要是典型的真核系统。对氨基酸代谢的研究极其有限。精氨酸、赖氨酸、蛋氨酸和脯氨酸被掺入蛋白质中,而谷氨酸则通过NADP特异性谷氨酸脱氢酶进行代谢。谷氨酸氧化产生NADPH和辅助能量(以α-酮戊二酸的形式)。红细胞谷胱甘肽在寄生虫代谢中的作用仍然不清楚。未来研究的重要目标应该是:定量评估氨基酸来源对寄生虫蛋白质合成的相对重要性;疟原虫蛋白酶的纯化和表征;以及寄生虫信使RNA的体外翻译。

相似文献

1
疟原虫中的氨基酸代谢与蛋白质合成
Bull World Health Organ. 1977;55(2-3):265-76.
2
疟原虫中氨基酸和核酸前体的转运
Bull World Health Organ. 1977;55(2-3):211-25.
3
4
疟原虫恶性疟原虫中的蛋氨酸转运。
Int J Parasitol. 2011 Jan;41(1):125-35. doi: 10.1016/j.ijpara.2010.09.001. Epub 2010 Sep 17.
5
疟原虫红内期早期的液泡消化和内吞作用过程。
J Cell Sci. 2010 Feb 1;123(Pt 3):441-50. doi: 10.1242/jcs.061499. Epub 2010 Jan 12.
6
血红蛋白酶抑制对恶性疟原虫感染红细胞的下游效应。
Mol Biochem Parasitol. 2010 Oct;173(2):81-7. doi: 10.1016/j.molbiopara.2010.05.007. Epub 2010 May 15.
7
在生理条件下,疟原虫色素/β-血红素的形成并非自发的。
FEBS Lett. 1996 Sep 16;393(2-3):189-93. doi: 10.1016/0014-5793(96)00881-2.
9
疟原虫疟色素/β-血红素在无蛋白质存在的情况下支持血红素聚合。
Nature. 1995 Mar 16;374(6519):269-71. doi: 10.1038/374269a0.

引用本文的文献

2
Rabenosyn-5 和 Rab5b 在宿主细胞质摄取中的作用揭示了疟原虫内体运输的保守性。
PLoS Biol. 2024 May 31;22(5):e3002639. doi: 10.1371/journal.pbio.3002639. eCollection 2024 May.
3
Kelch13 隔室中含有疟原虫中高度分化的囊泡运输蛋白。
PLoS Pathog. 2023 Dec 1;19(12):e1011814. doi: 10.1371/journal.ppat.1011814. eCollection 2023 Dec.
4
疟原虫营养通量与药物之间的关键相互依存关系。
Trends Parasitol. 2023 Nov;39(11):936-944. doi: 10.1016/j.pt.2023.08.008. Epub 2023 Sep 14.
5
功能筛选揭示了参与内吞运输和棒状体蛋白分拣的 prenylated 蛋白。
mBio. 2023 Aug 31;14(4):e0130923. doi: 10.1128/mbio.01309-23. Epub 2023 Aug 7.
6
开发一种人类疟疾芯片疾病模型,用于评估药物疗效和非靶毒性。
Sci Rep. 2023 Jun 28;13(1):10509. doi: 10.1038/s41598-023-35694-4.
8
多平台策略和代谢组学方法研究 感染犬的全面代谢物特征。
Int J Mol Sci. 2022 Jan 29;23(3):1575. doi: 10.3390/ijms23031575.
9
一种磷酸肌醇结合蛋白在疟原虫 Plasmodium falciparum 血红蛋白的运输途径中发挥作用。
mBio. 2022 Feb 22;13(1):e0323921. doi: 10.1128/mbio.03239-21. Epub 2022 Jan 18.
10
将微生物金属氨基肽酶作为人类传染病的靶点。
Microb Cell. 2021 Aug 9;8(10):239-246. doi: 10.15698/mic2021.10.761. eCollection 2021 Oct 4.

本文引用的文献

2
诺氏疟原虫和鸡疟原虫的色素。
Biochem J. 1947;41(4):619-22. doi: 10.1042/bj0410619.
3
ANTIGENS OF PLASMODIUM LOPHURAE.
J Protozool. 1964 Aug;11:409-17. doi: 10.1111/j.1550-7408.1964.tb01772.x.
4
疟色素(疟原虫血色素)性质的研究。II. 人类疟原虫、恶性疟原虫和三日疟原虫的色素
Ann Trop Med Parasitol. 1956 Jun;50(2):212-22. doi: 10.1080/00034983.1956.11685760.
5
诺氏疟原虫红细胞内期的硫需求
Biochem J. 1956 Jun;63(2):274-82. doi: 10.1042/bj0630274.
6
伯氏疟原虫的色素。
J Gen Microbiol. 1953 Feb;8(1):157-9. doi: 10.1099/00221287-8-1-157.
8
Carbon dioxide fixation in malaria (Plasmodium iophurae).
Nature. 1966 Dec 17;212(5068):1387-8. doi: 10.1038/2121387a0.
9
Malaria infection (Plasmodium iophurae): changes in free amino acids.
Science. 1966 Oct 14;154(3746):287-9. doi: 10.1126/science.154.3746.287.
10
伯氏疟原虫的圆盘电泳
J Parasitol. 1966 Feb;52(1):23-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验