ITER, SOA University, Bhubaneswar, India.
Veer Surendra Sai University of Technology, Burla, Sambalpur, India.
Med Biol Eng Comput. 2021 Apr;59(4):947-955. doi: 10.1007/s11517-021-02348-4. Epub 2021 Apr 5.
Breast cancer is a leading cause of mortality affecting women across the world. Early detection and diagnosis can decrease the mortality rate due to this cancer. Machine learning-based models are gaining popularity for biomedical applications due to the ability of nonlinear mapping between input and output patterns using supervised training phase. The research work in the paper is focused on the optimal adaptive threshold for mammogram mass segmentation, and detection in order to assist radiologist in accurate diagnosis Legendre neural network with single layer is used to develop the model, and the training is performed through Block Based Normalized Sign-Sign Least Mean Square (BBNSSLMS) algorithm. Legendre neural network expands the input vector using standard Legendre polynomial, and the recursive update principle is followed for the weight vector in higher dimension. The optimal threshold is indirectly used for proper segmentation of mammogram mass. The proposed segmentation method involves training phase with 30 images and testing phase by 151 images obtained from standard Mammogram Image Analysis Society (MIAS) database. The proposed model achieved a sensitivity of 95% and accuracy of 96% with false positives per image calculated as 1.19. • Threshold selection is carried out using single-layer Legendre NN with reduced computational complexity. BNSSLMS algorithm process the data samples block wise instead of sample by sample basis. Optimal threshold is generated according to the varying image properties which helps in correct segmentation and detection. • Due to sparse nature of the adaptive model, more numbers of weight coefficients are tending to zero which also helps in faster convergence. Mammogram Mass Detection Steps.
乳腺癌是全球女性死亡的主要原因。早期发现和诊断可以降低这种癌症的死亡率。基于机器学习的模型由于在监督训练阶段具有输入和输出模式之间的非线性映射能力,因此在生物医学应用中越来越受欢迎。本文的研究工作集中在乳腺肿块分割和检测的最佳自适应阈值上,以便协助放射科医生进行准确诊断。使用单层 Legendre 神经网络来开发模型,并通过基于块的归一化符号-符号最小均方(BBNSSLMS)算法进行训练。Legendre 神经网络使用标准 Legendre 多项式扩展输入向量,并遵循递归更新原理在更高维度上更新权重向量。最佳阈值间接用于乳腺肿块的适当分割。所提出的分割方法涉及 30 张图像的训练阶段和 151 张图像的测试阶段,这些图像是从标准乳腺图像分析协会(MIAS)数据库中获得的。所提出的模型实现了 95%的灵敏度和 96%的准确性,每个图像的假阳性率计算为 1.19。
使用具有降低计算复杂度的单层 Legendre NN 进行阈值选择。BNSSLMS 算法按块而不是逐个样本处理数据样本。根据变化的图像特性生成最佳阈值,有助于正确分割和检测。
由于自适应模型的稀疏性,更多的权重系数趋于零,这也有助于更快的收敛。乳腺肿块检测步骤。