Suppr超能文献

基于小波处理和自适应阈值技术的乳腺钼靶图像肿块检测

Mass Detection in Mammographic Images Using Wavelet Processing and Adaptive Threshold Technique.

机构信息

Shri Guru Gobind Singhji Institute of Engineering and Technology, Nanded, India.

出版信息

J Med Syst. 2016 Apr;40(4):82. doi: 10.1007/s10916-016-0435-3. Epub 2016 Jan 26.

Abstract

Detection of mass in mammogram for early diagnosis of breast cancer is a significant assignment in the reduction of the mortality rate. However, in some cases, screening of mass is difficult task for radiologist, due to variation in contrast, fuzzy edges and noisy mammograms. Masses and micro-calcifications are the distinctive signs for diagnosis of breast cancer. This paper presents, a method for mass enhancement using piecewise linear operator in combination with wavelet processing from mammographic images. The method includes, artifact suppression and pectoral muscle removal based on morphological operations. Finally, mass segmentation for detection using adaptive threshold technique is carried out to separate the mass from background. The proposed method has been tested on 130 (45 + 85) images with 90.9 and 91 % True Positive Fraction (TPF) at 2.35 and 2.1 average False Positive Per Image(FP/I) from two different databases, namely Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammography (DDSM). The obtained results show that, the proposed technique gives improved diagnosis in the early breast cancer detection.

摘要

在降低乳腺癌死亡率方面,通过乳房 X 光照片检测肿块以进行早期诊断是一项非常重要的任务。然而,由于对比度、模糊边缘和噪声乳房 X 光照片的变化,肿块的筛查对于放射科医生来说是一项困难的任务。肿块和微钙化是诊断乳腺癌的特征性标志。本文提出了一种利用分段线性算子结合小波处理从乳房 X 光图像中增强肿块的方法。该方法包括基于形态学操作的伪影抑制和胸肌去除。最后,使用自适应阈值技术进行肿块分割检测,将肿块与背景分离。该方法已经在来自两个不同数据库(即乳房 X 光图像分析协会(MIAS)和数字筛查乳房 X 光数据库(DDSM))的 130 张(45+85)图像上进行了测试,在 2.35 和 2.1 的平均每个图像假阳性率(FP/I)下,真阳性率(TPF)分别为 90.9%和 91%。所得结果表明,该技术在早期乳腺癌检测中提供了更好的诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验