Boni Federico, Jarrige Julien, Désangles Victor, Minea Tiberiu
DPHY, ONERA, Université Paris-Saclay, F-91123 Palaiseau, France.
Laboratoire de Physique des Gaz et des Plasmas, CNRS, Université Paris, 91405 Orsay, France.
Rev Sci Instrum. 2021 Mar 1;92(3):033507. doi: 10.1063/5.0040175.
The measurement of electron density is a key issue in understanding and controlling plasma applications. To date, plasma density in electric thrusters has been mainly evaluated with electrostatic techniques, such as the Langmuir probe, which could be quite invasive. In this paper, we propose the application of a microwave resonant probe, the curling probe, to the diagnostic of an electrodeless plasma thruster. The measurable electron density range and the probe accuracy are found to be limited by the probe natural frequency. We present the numerical study and the experimental characterization of three curling probes with different natural frequencies (700, 1400, and 3000 MHz, approximately). First, an analytical equation of the natural frequency as a function of geometrical parameters is drawn from 2D numerical simulations. Then, a procedure based on solid dielectric etalons is proposed for the absolute calibration of the probe. Finally, measurements are performed in the plume of an electron cyclotron resonance plasma thruster. Electron densities from 10 to 10 cm have been obtained in agreement with hairpin and Langmuir probes results. A wall-embedded probe has enabled measurements inside the thruster source with minimal plasma perturbation. A possible curling probe configuration, embedded in a reactor wall, is proposed as a fully non-invasive diagnostic for plasma sources.
电子密度的测量是理解和控制等离子体应用中的一个关键问题。迄今为止,电推力器中的等离子体密度主要通过静电技术进行评估,例如朗缪尔探针,这种方法可能具有较强的侵入性。在本文中,我们提出将一种微波谐振探针——卷曲探针应用于无电极等离子体推力器的诊断。发现可测量的电子密度范围和探针精度受到探针固有频率的限制。我们展示了三种具有不同固有频率(约700、1400和3000兆赫兹)的卷曲探针的数值研究和实验特性。首先,从二维数值模拟中得出固有频率作为几何参数函数的解析方程。然后,提出了一种基于固体介质标准具的方法用于探针的绝对校准。最后,在电子回旋共振等离子体推力器的羽流中进行测量。获得了10至10厘米的电子密度,与发夹式探针和朗缪尔探针的结果一致。一种壁嵌入式探针能够在对等离子体扰动最小的情况下在推力器源内部进行测量。提出了一种嵌入反应堆壁的可能的卷曲探针配置,作为等离子体源的完全非侵入性诊断方法。