Suppr超能文献

基于深度学习的多波长隐身到超散射切换的相变材料逆工程。

Deep-learning-enabled inverse engineering of multi-wavelength invisibility-to-superscattering switching with phase-change materials.

作者信息

Luo Jie, Li Xun, Zhang Xinyuan, Guo Jiajie, Liu Wei, Lai Yun, Zhan Yaohui, Huang Min

出版信息

Opt Express. 2021 Mar 29;29(7):10527-10537. doi: 10.1364/OE.422119.

Abstract

Inverse design of nanoparticles for desired scattering spectra and dynamic switching between the two opposite scattering anomalies, i.e. superscattering and invisibility, is important in realizing cloaking, sensing and functional devices. However, traditionally the design process is quite complicated, which involves complex structures with many choices of synthetic constituents and dispersions. Here, we demonstrate that a well-trained deep-learning neural network can handle these issues efficiently, which can not only forwardly predict scattering spectra of multilayer nanoparticles with high precision, but also inversely design the required structural and material parameters efficiently. Moreover, we show that the neural network is capable of finding out multi-wavelength invisibility-to-superscattering switching points at the desired wavelengths in multilayer nanoparticles composed of metals and phase-change materials. Our work provides a useful solution of deep learning for inverse design of nanoparticles with dynamic scattering spectra by using phase-change materials.

摘要

为实现所需散射光谱以及在两种相反散射异常(即超散射和隐形)之间进行动态切换而进行的纳米粒子逆设计,对于实现隐身、传感和功能器件至关重要。然而,传统上设计过程相当复杂,涉及具有多种合成成分和分散体选择的复杂结构。在此,我们证明一个训练有素的深度学习神经网络可以有效地处理这些问题,它不仅可以高精度地正向预测多层纳米粒子的散射光谱,还能有效地逆向设计所需的结构和材料参数。此外,我们表明该神经网络能够在由金属和相变材料组成的多层纳米粒子中,在所需波长处找出多波长隐形到超散射的切换点。我们的工作为利用相变材料进行具有动态散射光谱的纳米粒子逆设计提供了一种有用的深度学习解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验