Suppr超能文献

使用代谢物选择性多回波螺旋成像进行超极化 C 代谢物的心脏测量。

Cardiac measurement of hyperpolarized C metabolites using metabolite-selective multi-echo spiral imaging.

机构信息

Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.

GE Healthcare, Dallas, Texas, USA.

出版信息

Magn Reson Med. 2021 Sep;86(3):1494-1504. doi: 10.1002/mrm.28796. Epub 2021 Apr 6.

Abstract

PURPOSE

Noninvasive imaging with hyperpolarized (HP) pyruvate can capture in vivo cardiac metabolism. For proper quantification of the metabolites and optimization of imaging parameters, understanding MR characteristics such as s of the HP signals is critical. This study is to measure in vivo cardiac s of HP [1- C]pyruvate and the products in rodents and humans.

METHODS

A dynamic C multi-echo spiral imaging sequence that acquires [ C]bicarbonate, [1- C]lactate, and [1- C]pyruvate images in an interleaved manner was implemented for a clinical 3 Tesla system. of each metabolite was calculated from the multi-echo images by fitting the signal decay of each region of interest mono-exponentially. The performance of measuring using the sequence was first validated using a C phantom and then with rodents following a bolus injection of HP [1- C]pyruvate. In humans, of each metabolite was calculated for left ventricle, right ventricle, and myocardium.

RESULTS

Cardiac s of HP [1- C]pyruvate, [1- C]lactate, and [ C]bicarbonate in rodents were measured as 24.9 ± 5.0, 16.4 ± 4.7, and 16.9 ± 3.4 ms, respectively. In humans, of [1- C]pyruvate was 108.7 ± 22.6 ms in left ventricle and 129.4 ± 8.9 ms in right ventricle. of [1- C]lactate was 40.9 ± 8.3, 44.2 ± 5.5, and 43.7 ± 9.0 ms in left ventricle, right ventricle, and myocardium, respectively. of [ C]bicarbonate in myocardium was 64.4 ± 2.5 ms. The measurements were reproducible and consistent over time after the pyruvate injection.

CONCLUSION

The proposed metabolite-selective multi-echo spiral imaging sequence reliably measures in vivo cardiac s of HP [1- C]pyruvate and products.

摘要

目的

利用超极化(HP)丙酮酸进行无创成像可以捕获体内心脏代谢物。为了对代谢物进行适当的定量,并优化成像参数,了解 HP 信号的 MR 特征,如弛豫率 s,是至关重要的。本研究旨在测量体内心脏 HP [1- C]丙酮酸和产物在啮齿动物和人类中的 s。

方法

在临床 3T 系统上实现了一种动态 13 C 多回波螺旋成像序列,该序列以交错方式获取[ C]碳酸氢盐、[1- C]乳酸和[1- C]丙酮酸图像。通过对每个感兴趣区域的信号衰减进行单指数拟合,从多回波图像中计算出每种代谢物的 s。首先使用 13 C 体模验证该序列测量 s 的性能,然后使用 HP [1- C]丙酮酸静脉推注后的啮齿动物进行验证。在人类中,计算了左心室、右心室和心肌中每种代谢物的 s。

结果

在啮齿动物中,HP [1- C]丙酮酸、[1- C]乳酸和[ C]碳酸氢盐的心脏 s 分别为 24.9 ± 5.0、16.4 ± 4.7 和 16.9 ± 3.4 ms。在人类中,左心室中[1- C]丙酮酸的 s 为 108.7 ± 22.6 ms,右心室中为 129.4 ± 8.9 ms。左心室、右心室和心肌中[1- C]乳酸的 s 分别为 40.9 ± 8.3、44.2 ± 5.5 和 43.7 ± 9.0 ms。心肌中[ C]碳酸氢盐的 s 为 64.4 ± 2.5 ms。在丙酮酸注射后,随着时间的推移,测量结果具有可重复性且一致。

结论

所提出的代谢物选择性多回波螺旋成像序列可靠地测量体内心脏 HP [1- C]丙酮酸和产物的 s。

相似文献

1
Cardiac measurement of hyperpolarized C metabolites using metabolite-selective multi-echo spiral imaging.
Magn Reson Med. 2021 Sep;86(3):1494-1504. doi: 10.1002/mrm.28796. Epub 2021 Apr 6.
2
Dual-phase imaging of cardiac metabolism using hyperpolarized pyruvate.
Magn Reson Med. 2022 Jan;87(1):302-311. doi: 10.1002/mrm.29042. Epub 2021 Oct 7.
4
A metabolite specific 3D stack-of-spirals bSSFP sequence for improved bicarbonate imaging in hyperpolarized [1-C]Pyruvate MRI.
J Magn Reson. 2023 Aug;353:107518. doi: 10.1016/j.jmr.2023.107518. Epub 2023 Jun 26.
5
6
Dynamic relaxometry of hyperpolarized [1- C]pyruvate MRI in the human brain and kidneys.
Magn Reson Med. 2024 Mar;91(3):1030-1042. doi: 10.1002/mrm.29942. Epub 2023 Nov 27.
8
Overestimation of cardiac lactate production caused by liver metabolism of hyperpolarized [1- C]pyruvate.
Magn Reson Med. 2018 Nov;80(5):1882-1890. doi: 10.1002/mrm.27197. Epub 2018 Apr 1.
9
Multi-band echo-planar spectroscopic imaging of hyperpolarized C probes in a compact preclinical PET/MR scanner.
Magn Reson Med. 2022 May;87(5):2120-2129. doi: 10.1002/mrm.29145. Epub 2021 Dec 31.

引用本文的文献

1
Disrupted metabolic flux balance between pyruvate dehydrogenase and pyruvate carboxylase in human fatty liver.
Metabolism. 2025 Apr;165:156151. doi: 10.1016/j.metabol.2025.156151. Epub 2025 Jan 29.
2
Volumetric Patch-Based Super-Resolution Reconstruction of Hyperpolarized C Cardiac MRI.
IEEE Access. 2024;12:164315-164324. doi: 10.1109/access.2024.3491592. Epub 2024 Nov 4.
4
Current methods for hyperpolarized [1-C]pyruvate MRI human studies.
Magn Reson Med. 2024 Jun;91(6):2204-2228. doi: 10.1002/mrm.29875. Epub 2024 Mar 5.
5
Functional activation of pyruvate dehydrogenase in human brain using hyperpolarized [1- C]pyruvate.
Magn Reson Med. 2024 May;91(5):1822-1833. doi: 10.1002/mrm.30015. Epub 2024 Jan 24.
6
Quo Vadis Hyperpolarized C MRI?
Z Med Phys. 2025 Feb;35(1):8-32. doi: 10.1016/j.zemedi.2023.10.004. Epub 2023 Dec 29.
8
Dynamic relaxometry of hyperpolarized [1- C]pyruvate MRI in the human brain and kidneys.
Magn Reson Med. 2024 Mar;91(3):1030-1042. doi: 10.1002/mrm.29942. Epub 2023 Nov 27.

本文引用的文献

1
Characterization and compensation of inhomogeneity artifact in spiral hyperpolarized C imaging of the human heart.
Magn Reson Med. 2021 Jul;86(1):157-166. doi: 10.1002/mrm.28691. Epub 2021 Feb 5.
2
Effect of Doxorubicin on Myocardial Bicarbonate Production From Pyruvate Dehydrogenase in Women With Breast Cancer.
Circ Res. 2020 Dec 4;127(12):1568-1570. doi: 10.1161/CIRCRESAHA.120.317970. Epub 2020 Oct 14.
4
Noninvasive In Vivo Assessment of Cardiac Metabolism in the Healthy and Diabetic Human Heart Using Hyperpolarized C MRI.
Circ Res. 2020 Mar 13;126(6):725-736. doi: 10.1161/CIRCRESAHA.119.316260. Epub 2020 Feb 5.
5
Simultaneous T and T mapping of hyperpolarized C compounds using the bSSFP sequence.
J Magn Reson. 2020 Mar;312:106691. doi: 10.1016/j.jmr.2020.106691. Epub 2020 Feb 1.
6
Imaging breast cancer using hyperpolarized carbon-13 MRI.
Proc Natl Acad Sci U S A. 2020 Jan 28;117(4):2092-2098. doi: 10.1073/pnas.1913841117. Epub 2020 Jan 21.
8
Effects of excitation angle strategy on quantitative analysis of hyperpolarized pyruvate.
Magn Reson Med. 2019 Jun;81(6):3754-3762. doi: 10.1002/mrm.27687. Epub 2019 Feb 22.
9
Quantifying normal human brain metabolism using hyperpolarized [1-C]pyruvate and magnetic resonance imaging.
Neuroimage. 2019 Apr 1;189:171-179. doi: 10.1016/j.neuroimage.2019.01.027. Epub 2019 Jan 11.
10
Overestimation of cardiac lactate production caused by liver metabolism of hyperpolarized [1- C]pyruvate.
Magn Reson Med. 2018 Nov;80(5):1882-1890. doi: 10.1002/mrm.27197. Epub 2018 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验