Suppr超能文献

电子健康记录整合患者生成的健康数据对临床医生倦怠的影响。

The impact of electronic health record-integrated patient-generated health data on clinician burnout.

机构信息

Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.

出版信息

J Am Med Inform Assoc. 2021 Apr 23;28(5):1051-1056. doi: 10.1093/jamia/ocab017.

Abstract

Patient-generated health data (PGHD), such as patient-reported outcomes and mobile health data, have been increasingly used to improve health care delivery and outcomes. Integrating PGHD into electronic health records (EHRs) further expands the capacities to monitor patients' health status without requiring office visits or hospitalizations. By reviewing and discussing PGHD with patients remotely, clinicians could address the clinical issues efficiently outside of clinical settings. However, EHR-integrated PGHD may create a burden for clinicians, leading to burnout. This study aims to investigate how interactions with EHR-integrated PGHD may result in clinician burnout. We identify the potential contributing factors to clinician burnout using a modified FITT (Fit between Individuals, Task and Technology) framework. We found that technostress, time pressure, and workflow-related issues need to be addressed to accelerate the integration of PGHD into clinical care. The roles of artificial intelligence, algorithm-based clinical decision support, visualization format, human-computer interaction mechanism, workflow optimization, and financial reimbursement in reducing burnout are highlighted.

摘要

患者生成的健康数据(PGHD),如患者报告的结果和移动健康数据,已被越来越多地用于改善医疗保健的提供和结果。将 PGHD 整合到电子健康记录(EHR)中,进一步扩大了在不需要门诊或住院的情况下监测患者健康状况的能力。通过远程查看和与患者讨论 PGHD,临床医生可以在临床环境之外有效地解决临床问题。然而,EHR 整合的 PGHD 可能会给临床医生带来负担,导致 burnout。本研究旨在探讨与 EHR 整合的 PGHD 交互如何导致临床医生 burnout。我们使用经过修改的 FITT(个体、任务和技术之间的匹配)框架来确定导致临床医生 burnout 的潜在因素。我们发现,需要解决技术压力、时间压力和与工作流程相关的问题,以加速将 PGHD 整合到临床护理中。强调了人工智能、基于算法的临床决策支持、可视化格式、人机交互机制、工作流程优化和财务报销在减少 burnout 方面的作用。

相似文献

1
The impact of electronic health record-integrated patient-generated health data on clinician burnout.
J Am Med Inform Assoc. 2021 Apr 23;28(5):1051-1056. doi: 10.1093/jamia/ocab017.
3
Association of Electronic Health Record Design and Use Factors With Clinician Stress and Burnout.
JAMA Netw Open. 2019 Aug 2;2(8):e199609. doi: 10.1001/jamanetworkopen.2019.9609.
4
Building the evidence-base to reduce electronic health record-related clinician burden.
J Am Med Inform Assoc. 2021 Apr 23;28(5):1057-1061. doi: 10.1093/jamia/ocaa238.
5
Patient-generated health data and electronic health record integration: protocol for a scoping review.
BMJ Open. 2019 Dec 17;9(12):e033073. doi: 10.1136/bmjopen-2019-033073.
9
Patient Input into the Electronic Health Record: Co-Designing Solutions with Patients and Healthcare Professionals.
Stud Health Technol Inform. 2024 Aug 22;316:1477-1481. doi: 10.3233/SHTI240693.
10
Are specific elements of electronic health record use associated with clinician burnout more than others?
J Am Med Inform Assoc. 2020 Jul 1;27(9):1401-1410. doi: 10.1093/jamia/ocaa092.

引用本文的文献

1
Qualitative evaluation by community health professionals of a technology design for recording and mobilizing patient reported care narratives.
Digit Health. 2025 Jun 25;11:20552076251350932. doi: 10.1177/20552076251350932. eCollection 2025 Jan-Dec.
2
New Horizons for Consumer-Mediated Health Information Exchange.
Yearb Med Inform. 2024 Aug;33(1):179-190. doi: 10.1055/s-0044-1800741. Epub 2025 Apr 8.
3
6
Multimodal Data Hybrid Fusion and Natural Language Processing for Clinical Prediction Models.
AMIA Jt Summits Transl Sci Proc. 2024 May 31;2024:191-200. eCollection 2024.
7
Transforming and facilitating health care delivery through social networking platforms: evidences and implications from WeChat.
JAMIA Open. 2024 May 30;7(2):ooae047. doi: 10.1093/jamiaopen/ooae047. eCollection 2024 Jul.
9
Attitudes and perspectives of nurses and physicians in South Korea towards the clinical use of person-generated health data.
Digit Health. 2023 Nov 28;9:20552076231218133. doi: 10.1177/20552076231218133. eCollection 2023 Jan-Dec.

本文引用的文献

3
Predicting mortality in critically ill patients with diabetes using machine learning and clinical notes.
BMC Med Inform Decis Mak. 2020 Dec 30;20(Suppl 11):295. doi: 10.1186/s12911-020-01318-4.
4
Identifying Practice Facilitation Delays and Barriers in Primary Care Quality Improvement.
J Am Board Fam Med. 2020 Sep-Oct;33(5):655-664. doi: 10.3122/jabfm.2020.05.200058.
7
Innovations in research and clinical care using patient-generated health data.
CA Cancer J Clin. 2020 May;70(3):182-199. doi: 10.3322/caac.21608. Epub 2020 Apr 20.
8
Mobile Devices and Health.
N Engl J Med. 2019 Sep 5;381(10):956-968. doi: 10.1056/NEJMra1806949.
9
Early experiences with patient generated health data: health system and patient perspectives.
J Am Med Inform Assoc. 2019 Oct 1;26(10):952-959. doi: 10.1093/jamia/ocz045.
10
Interpreting and Acting on PRO Results in Clinical Practice: Lessons Learned From the PatientViewpoint System and Beyond.
Med Care. 2019 May;57 Suppl 5 Suppl 1(Suppl 5 1):S46-S51. doi: 10.1097/MLR.0000000000001086.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验