Suppr超能文献

机器对美国北部大陆冰川含水层系统饮用水深度高砷和高锰的预测。

Machine-Learning Predictions of High Arsenic and High Manganese at Drinking Water Depths of the Glacial Aquifer System, Northern Continental United States.

机构信息

U.S. Geological Survey, 2280 Woodale Drive, Mounds View, Minnesota 55112, United States.

U.S. Geological Survey, 101 Pitkin Street, East Hartford, Connecticut 06108, United States.

出版信息

Environ Sci Technol. 2021 May 4;55(9):5791-5805. doi: 10.1021/acs.est.0c06740. Epub 2021 Apr 6.

Abstract

Globally, over 200 million people are chronically exposed to arsenic (As) and/or manganese (Mn) from drinking water. We used machine-learning (ML) boosted regression tree (BRT) models to predict high As (>10 μg/L) and Mn (>300 μg/L) in groundwater from the glacial aquifer system (GLAC), which spans 25 states in the northern United States and provides drinking water to 30 million people. Our BRT models' predictor variables (PVs) included recently developed three-dimensional estimates of a suite of groundwater age metrics, redox condition, and pH. We also demonstrated a successful approach to significantly improve ML prediction sensitivity for imbalanced data sets (small percentage of high values). We present predictions of the probability of high As and high Mn concentrations in groundwater, and uncertainty, at two nonuniform depth surfaces that represent moving median depths of GLAC domestic and public supply wells within the three-dimensional model domain. Predicted high likelihood of anoxic condition (high iron or low dissolved oxygen), predicted pH, relative well depth, several modeled groundwater age metrics, and hydrologic position were all PVs retained in both models; however, PV importance and influence differed between the models. High-As and high-Mn groundwater was predicted with high likelihood over large portions of the central part of the GLAC.

摘要

全球有超过 2 亿人因饮用水中的砷(As)和/或锰(Mn)而受到慢性暴露。我们使用机器学习(ML)增强回归树(BRT)模型来预测来自冰川含水层系统(GLAC)的地下水的高砷(>10μg/L)和高锰(>300μg/L),该系统跨越美国北部的 25 个州,为 3000 万人提供饮用水。我们的 BRT 模型的预测变量(PVs)包括最近开发的一套地下水年龄指标、氧化还原条件和 pH 的三维估计。我们还展示了一种成功的方法,可以显著提高不平衡数据集(小比例的高值)的 ML 预测敏感性。我们在两个非均匀深度表面上展示了地下水高砷和高锰浓度的概率预测及其不确定性,这两个表面代表了三维模型域内 GLAC 国内和公共供水井的移动中位数深度。在两个模型中都保留了预测缺氧条件(高铁或低溶解氧)、预测 pH 值、相对井深、几个建模的地下水年龄指标和水文位置的高可能性;然而,模型之间的 PV 重要性和影响不同。在 GLAC 的中心部分的大部分地区,高砷和高锰地下水的预测具有很高的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验