Suppr超能文献

地球科学中的人工智能:进展、挑战与展望。

Artificial intelligence for geoscience: Progress, challenges, and perspectives.

作者信息

Zhao Tianjie, Wang Sheng, Ouyang Chaojun, Chen Min, Liu Chenying, Zhang Jin, Yu Long, Wang Fei, Xie Yong, Li Jun, Wang Fang, Grunwald Sabine, Wong Bryan M, Zhang Fan, Qian Zhen, Xu Yongjun, Yu Chengqing, Han Wei, Sun Tao, Shao Zezhi, Qian Tangwen, Chen Zhao, Zeng Jiangyuan, Zhang Huai, Letu Husi, Zhang Bing, Wang Li, Luo Lei, Shi Chong, Su Hongjun, Zhang Hongsheng, Yin Shuai, Huang Ni, Zhao Wei, Li Nan, Zheng Chaolei, Zhou Yang, Huang Changping, Feng Defeng, Xu Qingsong, Wu Yan, Hong Danfeng, Wang Zhenyu, Lin Yinyi, Zhang Tangtang, Kumar Prashant, Plaza Antonio, Chanussot Jocelyn, Zhang Jiabao, Shi Jiancheng, Wang Lizhe

机构信息

Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China.

School of Computer Science, China University of Geosciences, Wuhan 430078, China.

出版信息

Innovation (Camb). 2024 Aug 22;5(5):100691. doi: 10.1016/j.xinn.2024.100691. eCollection 2024 Sep 9.

Abstract

This paper explores the evolution of geoscientific inquiry, tracing the progression from traditional physics-based models to modern data-driven approaches facilitated by significant advancements in artificial intelligence (AI) and data collection techniques. Traditional models, which are grounded in physical and numerical frameworks, provide robust explanations by explicitly reconstructing underlying physical processes. However, their limitations in comprehensively capturing Earth's complexities and uncertainties pose challenges in optimization and real-world applicability. In contrast, contemporary data-driven models, particularly those utilizing machine learning (ML) and deep learning (DL), leverage extensive geoscience data to glean insights without requiring exhaustive theoretical knowledge. ML techniques have shown promise in addressing Earth science-related questions. Nevertheless, challenges such as data scarcity, computational demands, data privacy concerns, and the "black-box" nature of AI models hinder their seamless integration into geoscience. The integration of physics-based and data-driven methodologies into hybrid models presents an alternative paradigm. These models, which incorporate domain knowledge to guide AI methodologies, demonstrate enhanced efficiency and performance with reduced training data requirements. This review provides a comprehensive overview of geoscientific research paradigms, emphasizing untapped opportunities at the intersection of advanced AI techniques and geoscience. It examines major methodologies, showcases advances in large-scale models, and discusses the challenges and prospects that will shape the future landscape of AI in geoscience. The paper outlines a dynamic field ripe with possibilities, poised to unlock new understandings of Earth's complexities and further advance geoscience exploration.

摘要

本文探讨了地球科学探究的演变,追溯了从传统的基于物理的模型到由人工智能(AI)和数据收集技术的重大进步所推动的现代数据驱动方法的发展历程。传统模型基于物理和数值框架,通过明确重构潜在的物理过程提供有力的解释。然而,它们在全面捕捉地球的复杂性和不确定性方面的局限性,在优化和实际应用中带来了挑战。相比之下,当代数据驱动模型,特别是那些利用机器学习(ML)和深度学习(DL)的模型,利用大量地球科学数据来获取见解,而无需详尽的理论知识。ML技术在解决与地球科学相关的问题方面已显示出前景。尽管如此,诸如数据稀缺、计算需求、数据隐私问题以及AI模型的“黑箱”性质等挑战阻碍了它们无缝融入地球科学。将基于物理的方法和数据驱动的方法整合到混合模型中提供了一种替代范式。这些模型结合领域知识来指导AI方法,在减少训练数据需求的情况下展示出更高的效率和性能。本综述全面概述了地球科学研究范式,强调了先进AI技术与地球科学交叉领域中未被发掘的机会。它审视了主要方法,展示了大规模模型的进展,并讨论了将塑造地球科学中AI未来格局的挑战和前景。本文勾勒出一个充满可能性的动态领域,有望开启对地球复杂性的新理解,并进一步推进地球科学探索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f54b/11404188/fa0d123369d9/fx1.jpg

相似文献

1
Artificial intelligence for geoscience: Progress, challenges, and perspectives.
Innovation (Camb). 2024 Aug 22;5(5):100691. doi: 10.1016/j.xinn.2024.100691. eCollection 2024 Sep 9.
3
Artificial intelligence: A powerful paradigm for scientific research.
Innovation (Camb). 2021 Oct 28;2(4):100179. doi: 10.1016/j.xinn.2021.100179. eCollection 2021 Nov 28.
5
Artificial intelligence and Machine Learning approaches in sports: Concepts, applications, challenges, and future perspectives.
Braz J Phys Ther. 2024 May-Jun;28(3):101083. doi: 10.1016/j.bjpt.2024.101083. Epub 2024 May 21.
6
Authentic assessment in medical education: exploring AI integration and student-as-partners collaboration.
Postgrad Med J. 2024 Nov 22;100(1190):959-967. doi: 10.1093/postmj/qgae088.
7
Artificial Intelligence in Diagnostic Dermatology: Challenges and the Way Forward.
Indian Dermatol Online J. 2023 Oct 17;14(6):782-787. doi: 10.4103/idoj.idoj_462_23. eCollection 2023 Nov-Dec.
8
Emerging research trends in artificial intelligence for cancer diagnostic systems: A comprehensive review.
Heliyon. 2024 Aug 23;10(17):e36743. doi: 10.1016/j.heliyon.2024.e36743. eCollection 2024 Sep 15.
9
Artificial Intelligence in Point-of-Care Biosensing: Challenges and Opportunities.
Diagnostics (Basel). 2024 May 25;14(11):1100. doi: 10.3390/diagnostics14111100.
10
Integrating artificial intelligence to assess emotions in learning environments: a systematic literature review.
Front Psychol. 2024 Jun 19;15:1387089. doi: 10.3389/fpsyg.2024.1387089. eCollection 2024.

引用本文的文献

1
A revolutionary multi-dimensional data format for remote sensing.
Innovation (Camb). 2025 May 14;6(8):100950. doi: 10.1016/j.xinn.2025.100950. eCollection 2025 Aug 4.
2
Filling gaps in PM2.5 time series: A broad evaluation from statistical to advanced neural network models.
PLoS One. 2025 Aug 14;20(8):e0330211. doi: 10.1371/journal.pone.0330211. eCollection 2025.
3
Embodied cognitive intelligence guided Moon sample collection.
Innovation (Camb). 2025 Apr 29;6(7):100939. doi: 10.1016/j.xinn.2025.100939. eCollection 2025 Jul 7.
4
Foundation models and intelligent decision-making: Progress, challenges, and perspectives.
Innovation (Camb). 2025 May 12;6(6):100948. doi: 10.1016/j.xinn.2025.100948. eCollection 2025 Jun 2.
5
Unleashing the potential of remote sensing foundation models via bridging data and computility islands.
Innovation (Camb). 2025 Feb 19;6(6):100841. doi: 10.1016/j.xinn.2025.100841. eCollection 2025 Jun 2.
6
Scalable earthquake magnitude prediction using spatio-temporal data and model versioning.
Sci Rep. 2025 Jun 2;15(1):19265. doi: 10.1038/s41598-025-00804-x.
7
Tracking the carbon footprint of global generative artificial intelligence.
Innovation (Camb). 2025 Feb 28;6(5):100866. doi: 10.1016/j.xinn.2025.100866. eCollection 2025 May 5.
8
Pan-spatial Earth information system: A new methodology for cognizing the earth system.
Innovation (Camb). 2024 Dec 17;6(3):100770. doi: 10.1016/j.xinn.2024.100770. eCollection 2025 Mar 3.
9
Urban sensing in the era of large language models.
Innovation (Camb). 2025 Jan 6;6(1):100749. doi: 10.1016/j.xinn.2024.100749.
10
Observational Diagnostics: The Building Block of AI-Powered Visual Aid for Dental Practitioners.
Bioengineering (Basel). 2024 Dec 25;12(1):9. doi: 10.3390/bioengineering12010009.

本文引用的文献

1
Large-scale flood modeling and forecasting with FloodCast.
Water Res. 2024 Oct 15;264:122162. doi: 10.1016/j.watres.2024.122162. Epub 2024 Jul 26.
2
Learning Disentangled Priors for Hyperspectral Anomaly Detection: A Coupling Model-Driven and Data-Driven Paradigm.
IEEE Trans Neural Netw Learn Syst. 2025 Apr;36(4):6883-6896. doi: 10.1109/TNNLS.2024.3401589. Epub 2025 Apr 4.
3
Emerging contaminants: A One Health perspective.
Innovation (Camb). 2024 Mar 13;5(4):100612. doi: 10.1016/j.xinn.2024.100612. eCollection 2024 Jul 1.
4
Deforestation in Latin America in the 2000s predominantly occurred outside of typical mature forests.
Innovation (Camb). 2024 Mar 12;5(3):100610. doi: 10.1016/j.xinn.2024.100610. eCollection 2024 May 6.
5
SpectralGPT: Spectral Remote Sensing Foundation Model.
IEEE Trans Pattern Anal Mach Intell. 2024 Aug;46(8):5227-5244. doi: 10.1109/TPAMI.2024.3362475. Epub 2024 Jul 2.
6
The crucial role of soil moisture in the evolution of forest cover in Asia since the Last Glacial Maximum.
Innovation (Camb). 2024 Feb 25;5(3):100594. doi: 10.1016/j.xinn.2024.100594. eCollection 2024 May 6.
7
Urban heat mitigation by green and blue infrastructure: Drivers, effectiveness, and future needs.
Innovation (Camb). 2024 Feb 7;5(2):100588. doi: 10.1016/j.xinn.2024.100588. eCollection 2024 Mar 4.
8
The digital revolution of Earth-system science.
Nat Comput Sci. 2021 Feb;1(2):104-113. doi: 10.1038/s43588-021-00023-0. Epub 2021 Feb 22.
9
Towards full-stack deep learning-empowered data processing pipeline for synchrotron tomography experiments.
Innovation (Camb). 2023 Nov 16;5(1):100539. doi: 10.1016/j.xinn.2023.100539. eCollection 2024 Jan 8.
10
Artificial intelligence for science-bridging data to wisdom.
Innovation (Camb). 2023 Oct 18;4(6):100525. doi: 10.1016/j.xinn.2023.100525. eCollection 2023 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验