Koshy David M, Nathan Sindhu S, Asundi Arun S, Abdellah Ahmed M, Dull Samuel M, Cullen David A, Higgins Drew, Bao Zhenan, Bent Stacey F, Jaramillo Thomas F
Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA.
SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA.
Angew Chem Int Ed Engl. 2021 Aug 2;60(32):17472-17480. doi: 10.1002/anie.202101326. Epub 2021 Jun 30.
Understanding the differences between reactions driven by elevated temperature or electric potential remains challenging, largely due to materials incompatibilities between thermal catalytic and electrocatalytic environments. We show that Ni, N-doped carbon (NiPACN), an electrocatalyst for the reduction of CO to CO (CO R), can also selectively catalyze thermal CO to CO via the reverse water gas shift (RWGS) representing a direct analogy between catalytic phenomena across the two reaction environments. Advanced characterization techniques reveal that NiPACN likely facilitates RWGS on dispersed Ni sites in agreement with CO R active site studies. Finally, we construct a generalized reaction driving-force that includes temperature and potential and suggest that NiPACN could facilitate faster kinetics in CO R relative to RWGS due to lower intrinsic barriers. This report motivates further studies that quantitatively link catalytic phenomena across disparate reaction environments.
理解由升高的温度或电势驱动的反应之间的差异仍然具有挑战性,这主要是由于热催化和电催化环境之间的材料不相容性。我们表明,用于将CO还原为CO(CO R)的电催化剂Ni、N掺杂碳(NiPACN),也可以通过逆水煤气变换(RWGS)选择性地催化热CO转化为CO,这代表了两种反应环境中催化现象之间的直接类比。先进的表征技术表明,与CO R活性位点研究一致,NiPACN可能促进分散的Ni位点上的RWGS。最后,我们构建了一个包括温度和电势的广义反应驱动力,并表明由于较低的固有势垒,NiPACN相对于RWGS可以促进CO R中更快的动力学。本报告推动了进一步的研究,以定量地将不同反应环境中的催化现象联系起来。