Université de Paris, Institut de physique du globe de Paris, CNRS, Paris, France.
Observatoire Volcanologique du Piton de la Fournaise, Institut de physique du globe de Paris, La Plaine des Cafres, France.
Nat Commun. 2021 Apr 6;12(1):2064. doi: 10.1038/s41467-021-22231-y.
The coupling between the ocean activity driven by winds and the solid Earth generates seismic signals recorded by seismometers worldwide. The 2-10 s period band, known as secondary microseism, represents the largest background seismic wavefield. While moving over the ocean, tropical cyclones generate particularly strong and localized sources of secondary microseisms that are detected remotely by seismic arrays. We assess and compare the seismic sources of P, SV, and SH waves associated with typhoon Ioke (2006) during its extra-tropical transition. To understand their generation mechanisms, we compare the observed multi-phase sources with theoretical sources computed with a numerical ocean wave model, and we assess the influence of the ocean resonance (or ocean site effect) and coastal reflection of ocean waves. We show how the location and lateral extent of the associated seismic source is period- and phase-dependent. This information is crucial for the use of body waves for ambient noise imaging and gives insights about the sea state, complementary to satellite data.
海洋活动受风和固体地球的相互作用而产生地震信号,这些信号被全球范围内的地震仪记录下来。2-10 秒周期带被称为次生微震,代表了最大的背景地震波场。热带气旋在海洋上移动时会产生特别强烈和局部的次生微震源,这些源可以通过地震台阵远程探测到。我们评估和比较了与 2006 年台风 Ioke 在温带气旋过渡期间相关的 P、SV 和 SH 波的地震震源。为了了解它们的产生机制,我们将观测到的多相震源与用数值海浪模型计算的理论震源进行了比较,并评估了海洋共振(或海洋场地效应)和海浪的海岸反射的影响。我们展示了相关地震震源的位置和横向范围如何随周期和相位而变化。这些信息对于利用体波进行环境噪声成像至关重要,并提供了有关海况的见解,这是对卫星数据的补充。