Liu Liu, Liu Ji, Tao Dacheng
IEEE Trans Pattern Anal Mach Intell. 2022 Sep;44(9):5813-5825. doi: 10.1109/TPAMI.2021.3071594. Epub 2022 Aug 4.
This paper explores the non-convex composition optimization consisting of inner and outer finite-sum functions with a large number of component functions. This problem arises in important applications such as nonlinear embedding and reinforcement learning. Although existing approaches such as stochastic gradient descent (SGD) and stochastic variance reduced gradient (SVRG) descent can be applied to solve this problem, their query complexities tend to be high, especially when the number of inner component functions is large. Therefore, to significantly improve the query complexity of current approaches, we have devised the stochastic composition via variance reduction (SCVR). What's more, we analyze the query complexity under different numbers of inner function and outer function. Based on different kinds of estimation of inner component function, we also present the SCVRII algorithm, though the order of query complexities are the same with SCVR. Additionally, we propose an extension to handle the mini-batch cases, which improve the query complexity under the optimal mini-batch size. The experimental results validate our proposed algorithms and theoretical analyses.
本文探讨了由具有大量分量函数的内、外有限和函数组成的非凸复合优化问题。该问题出现在诸如非线性嵌入和强化学习等重要应用中。尽管诸如随机梯度下降(SGD)和随机方差减少梯度(SVRG)下降等现有方法可用于解决此问题,但其查询复杂度往往较高,尤其是当内部分量函数数量较大时。因此,为了显著提高当前方法的查询复杂度,我们设计了通过方差减少的随机复合(SCVR)方法。此外,我们分析了在内函数和外函数数量不同的情况下的查询复杂度。基于对内部分量函数的不同估计,我们还提出了SCVRII算法,尽管其查询复杂度的阶数与SCVR相同。此外,我们提出了一种扩展方法来处理小批量情况,这在最优小批量大小下提高了查询复杂度。实验结果验证了我们提出的算法和理论分析。