Suppr超能文献

基于概率和深度学习挖掘的医学数据特征学习:模型开发与验证

Medical Data Feature Learning Based on Probability and Depth Learning Mining: Model Development and Validation.

作者信息

Yang Yuanlin, Li Dehua

机构信息

Department of Logistics Management, West China Second University Hospital, Sichuan University, Chengdu, China.

Key Laboratory of Obstetric and Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China.

出版信息

JMIR Med Inform. 2021 Apr 8;9(4):e19055. doi: 10.2196/19055.

Abstract

BACKGROUND

Big data technology provides unlimited potential for efficient storage, processing, querying, and analysis of medical data. Technologies such as deep learning and machine learning simulate human thinking, assist physicians in diagnosis and treatment, provide personalized health care services, and promote the use of intelligent processes in health care applications.

OBJECTIVE

The aim of this paper was to analyze health care data and develop an intelligent application to predict the number of hospital outpatient visits for mass health impact and analyze the characteristics of health care big data. Designing a corresponding data feature learning model will help patients receive more effective treatment and will enable rational use of medical resources.

METHODS

A cascaded depth model was successfully implemented by constructing a cascaded depth learning framework and by studying and analyzing the specific feature transformation, feature selection, and classifier algorithm used in the framework. To develop a medical data feature learning model based on probabilistic and deep learning mining, we mined information from medical big data and developed an intelligent application that studies the differences in medical data for disease risk assessment and enables feature learning of the related multimodal data. Thus, we propose a cascaded data feature learning model.

RESULTS

The depth model created in this paper is more suitable for forecasting daily outpatient volumes than weekly or monthly volumes. We believe that there are two reasons for this: on the one hand, the training data set in the daily outpatient volume forecast model is larger, so the training parameters of the model more closely fit the actual data relationship. On the other hand, the weekly and monthly outpatient volume is the cumulative daily outpatient volume; therefore, errors caused by the prediction will gradually accumulate, and the greater the interval, the lower the prediction accuracy.

CONCLUSIONS

Several data feature learning models are proposed to extract the relationships between outpatient volume data and obtain the precise predictive value of the outpatient volume, which is very helpful for the rational allocation of medical resources and the promotion of intelligent medical treatment.

摘要

背景

大数据技术为医学数据的高效存储、处理、查询和分析提供了无限潜力。深度学习和机器学习等技术模拟人类思维,协助医生进行诊断和治疗,提供个性化医疗服务,并促进智能流程在医疗保健应用中的使用。

目的

本文旨在分析医疗保健数据,开发一种智能应用程序,以预测医院门诊就诊人数,从而对大众健康产生影响,并分析医疗保健大数据的特征。设计相应的数据特征学习模型将有助于患者获得更有效的治疗,并实现医疗资源的合理利用。

方法

通过构建级联深度学习框架,并研究和分析该框架中使用的特定特征转换、特征选择和分类器算法,成功实现了一个级联深度模型。为了开发基于概率和深度学习挖掘的医学数据特征学习模型,我们从医学大数据中挖掘信息,并开发了一种智能应用程序,该程序研究医疗数据的差异以进行疾病风险评估,并实现相关多模态数据的特征学习。因此,我们提出了一种级联数据特征学习模型。

结果

本文创建的深度模型比预测每周或每月门诊量更适合预测每日门诊量。我们认为有两个原因:一方面,每日门诊量预测模型中的训练数据集更大,因此模型的训练参数更紧密地拟合实际数据关系。另一方面,每周和每月的门诊量是每日门诊量的累积;因此,预测引起的误差会逐渐累积,间隔越大,预测准确性越低。

结论

提出了几种数据特征学习模型,以提取门诊量数据之间的关系,并获得门诊量的精确预测值,这对医疗资源的合理分配和智能医疗的推广非常有帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35eb/8063096/085ac550e0b2/medinform_v9i4e19055_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验