Suppr超能文献

基于时间序列的机器学习方法在预测医院出院量中的应用评估。

Assessment of Time-Series Machine Learning Methods for Forecasting Hospital Discharge Volume.

机构信息

Center for Quantitative Health, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.

出版信息

JAMA Netw Open. 2018 Nov 2;1(7):e184087. doi: 10.1001/jamanetworkopen.2018.4087.

Abstract

IMPORTANCE

Forecasting the volume of hospital discharges has important implications for resource allocation and represents an opportunity to improve patient safety at periods of elevated risk.

OBJECTIVE

To determine the performance of a new time-series machine learning method for forecasting hospital discharge volume compared with simpler methods.

DESIGN

A retrospective cohort study of daily hospital discharge volumes at 2 large, New England academic medical centers between January 1, 2005, and December 31, 2014 (hospital 1), or January 1, 2005, and December 31, 2010 (hospital 2), comparing time-series forecasting methods for prediction was performed. Data analysis was conducted from February 28, 2017, to August 30, 2018. Group-level data for all discharges from inpatient units were included. In addition to conventional methods, a technique originally developed for allocating data center resources, and comparison strategies for incorporating prior data and frequency of model updates, was conducted to identify the model application that optimized forecast accuracy.

MAIN OUTCOMES AND MEASURES

Model calibration as measured by R2 and, secondarily, number of days with errors greater than 1 SD of daily volume.

RESULTS

During the forecasted year, hospital 1 had 54 411 discharges (daily mean, 149) and hospital 2 had 47 456 discharges (daily mean, 130). The machine learning method was well calibrated at both sites (R2, 0.843 and 0.726, respectively) and made errors greater than 1 SD of daily volume on only 13 and 22 days, respectively, of the forecast year at the 2 sites. Last-value-carried-forward models performed somewhat less well (calibration R2, 0.781 and 0.596, respectively) with 13 and 46 errors of 1 SD or greater, respectively. More frequent retraining and training sets of longer than 1 year had minimal effects on the machine learning method's performance.

CONCLUSIONS AND RELEVANCE

Volume of hospital discharges can perhaps be reliably forecasted using simple carry-forward models as well as methods drawn from machine learning. The benefit of the latter does not appear to be dependent on extensive training data and may enable forecasts up to 1 year in advance with superior absolute accuracy to carry-forward models.

摘要

重要性

预测医院出院量对资源分配具有重要意义,并且代表了在风险升高时期提高患者安全性的机会。

目的

确定一种新的时间序列机器学习方法在预测医院出院量方面的性能,与更简单的方法相比。

设计

对 2005 年 1 月 1 日至 2014 年 12 月 31 日期间新英格兰 2 家大型学术医疗中心的每日医院出院量(医院 1)或 2005 年 1 月 1 日至 2010 年 12 月 31 日(医院 2)进行回顾性队列研究,对时间序列预测方法进行比较,以进行预测。数据分析于 2017 年 2 月 28 日至 2018 年 8 月 30 日进行。包括住院病房所有出院患者的组级数据。除了常规方法外,还使用了最初为分配数据中心资源而开发的技术,以及用于纳入先前数据和模型更新频率的比较策略,以确定优化预测准确性的模型应用程序。

主要结果和措施

模型校准度,以 R2 衡量,其次是每天有超过 1 个标准差的误差的天数。

结果

在预测年度期间,医院 1 有 54411 名出院患者(每日平均 149 人),医院 2 有 47456 名出院患者(每日平均 130 人)。机器学习方法在两个地点都得到了很好的校准(R2,分别为 0.843 和 0.726),并且在两个地点的预测年度中,每天有超过 1 个标准差的误差仅为 13 天和 22 天。上一个值延续的模型表现稍差(校准 R2,分别为 0.781 和 0.596),分别有 13 和 46 个超过 1 个标准差的误差。更频繁的重新训练和训练集超过 1 年对机器学习方法的性能影响不大。

结论和相关性

使用简单的延续模型以及从机器学习中获得的方法,也许可以可靠地预测医院出院量。后者的好处似乎并不依赖于广泛的训练数据,并且可以使用优于延续模型的绝对精度提前预测长达 1 年的时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbab/6324591/036ec8d92e5f/jamanetwopen-1-e184087-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验