Das Tilak, Tosoni Sergio, Pacchioni Gianfranco
Dipartimento di Scienza dei Materiali, Università degli Studi Milano-Bicocca, via R. Cozzi, 55-20125 Milano, Italy.
J Chem Phys. 2021 Apr 7;154(13):134706. doi: 10.1063/5.0048104.
The role of the support in tuning the properties of transition metal (TM) atoms is studied by means of density functional theory calculations. We have considered the adsorption of Cu, Ag, Au, Ni, Pd, and Pt atoms on crystalline silica bilayers, either free-standing or supported on Ru(0001) and Pt(111) metal surfaces. These systems have been compared with an hydroxylated SiO/Si(100) film simulating the native oxide formed on a silicon wafer. The properties of the TM atoms change significantly on the various supports. While the unsupported silica bilayer weakly binds some of the TM atoms studied, the SiO/Ru(0001) or SiO/Pt(111) supports exhibit enhanced reactivity, sometimes resulting in a net electron transfer with the formation of charged species. Differences in the behavior of SiO/Ru(0001) and SiO/Pt(111) are rationalized in terms of different work functions and metal/oxide interfacial distances. No electron transfer is observed on the SiO/Si(100) films. Here, the presence of hydroxyl groups on the surface provides relatively strong binding sites for the TM atoms that can be stabilized by the interaction with one or two OH groups. The final aspect that has been investigated is the porosity of the silica bilayer, at variance with the dense SiO/Si(100) film. Depending on the atomic size, some TM atoms can penetrate spontaneously through the six-membered silica rings and become stabilized in the pores of the bilayer or at the SiO/metal interface. This study shows how very different chemical properties can be obtained by depositing the same TM atom on different silica supports.
通过密度泛函理论计算研究了载体在调节过渡金属(TM)原子性质方面的作用。我们考虑了Cu、Ag、Au、Ni、Pd和Pt原子在独立的或负载在Ru(0001)和Pt(111)金属表面上的结晶二氧化硅双层上的吸附。这些体系已与模拟硅片上形成的天然氧化物的羟基化SiO/Si(100)薄膜进行了比较。TM原子在各种载体上的性质发生了显著变化。虽然未负载的二氧化硅双层对所研究的一些TM原子的结合较弱,但SiO/Ru(0001)或SiO/Pt(111)载体表现出增强的反应性,有时会导致净电子转移并形成带电物种。SiO/Ru(0001)和SiO/Pt(111)行为上的差异根据不同的功函数和金属/氧化物界面距离进行了合理解释。在SiO/Si(100)薄膜上未观察到电子转移。在这里,表面羟基的存在为TM原子提供了相对较强的结合位点,这些位点可以通过与一个或两个OH基团的相互作用而稳定下来。最后研究的一个方面是二氧化硅双层的孔隙率,这与致密的SiO/Si(100)薄膜不同。根据原子大小,一些TM原子可以自发地穿过六元二氧化硅环,并在双层的孔隙中或SiO/金属界面处稳定下来。这项研究表明,通过将相同的TM原子沉积在不同的二氧化硅载体上可以获得非常不同的化学性质。