Suppr超能文献

一种使用增强型模拟退火算法解决旅行小偷问题的新方法。

A novel approach for solving travelling thief problem using enhanced simulated annealing.

作者信息

Ali Hamid, Zaid Rafique Muhammad, Shahzad Sarfraz Muhammad, Malik Muhammad Sheraz Arshad, Alqahtani Mohammed A, Alqurni Jehad Saad

机构信息

Department of Computer Science, National Textile University, Faisalabad, Pakistan.

Department of Computer Science, National University of Computer and Emerging Sciences, Islamabad, Pakistan.

出版信息

PeerJ Comput Sci. 2021 Mar 16;7:e377. doi: 10.7717/peerj-cs.377. eCollection 2021.

Abstract

Real-world optimization problems are getting more and more complex due to the involvement of inter dependencies. These complex problems need more advanced optimizing techniques. The Traveling Thief Problem (TTP) is an optimization problem that combines two well-known NP-Hard problems including the 0/1 knapsack problem and traveling salesman problem. TTP contains a person known as a thief who plans a tour to collect multiple items to fill his knapsack to gain maximum profit while incurring minimum cost in a standard time interval of 600 s. This paper proposed an efficient technique to solve the TTP problem by rearranging the steps of the knapsack. Initially, the picking strategy starts randomly and then a traversal plan is generated through the Lin-Kernighan heuristic. This traversal is then improved by eliminating the insignificant cities which contribute towards profit adversely by applying the modified simulated annealing technique. The proposed technique on different instances shows promising results as compared to other state-of-the-art algorithms. This technique has outperformed on a small and medium-size instance and competitive results have been obtained in the context of relatively larger instances.

摘要

由于相互依赖关系的存在,现实世界中的优化问题正变得越来越复杂。这些复杂问题需要更先进的优化技术。旅行窃贼问题(TTP)是一个优化问题,它结合了两个著名的NP难问题,即0/1背包问题和旅行商问题。TTP中有一个被称为窃贼的人,他计划进行一次旅行,收集多个物品以装满他的背包,从而在600秒的标准时间间隔内获得最大利润,同时产生最小成本。本文提出了一种通过重新安排背包步骤来解决TTP问题的有效技术。最初,挑选策略随机开始,然后通过林-克纳汉启发式算法生成一个遍历计划。然后,通过应用改进的模拟退火技术消除对利润有不利影响的无关紧要的城市,对该遍历进行改进。与其他现有算法相比,该技术在不同实例上显示出了有希望的结果。该技术在中小规模实例上表现出色,在相对较大规模实例的情况下也取得了有竞争力的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0161/8022508/855296cc1cf2/peerj-cs-07-377-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验