Anisimova Olga K, Seredin Timofey M, Danilova Olga A, Filyushin Mikhail
FSI Federal Research Centre Fundamentals of Biotechnology of the Russian Academy of Sciences, 442108, Laboratory of plant system biology , Moscow, Moscow, Russian Federation;
Federal Scientific Vegetable Center, VNIISSOK, Moscow, Russian Federation;
Plant Dis. 2021 Apr 9. doi: 10.1094/PDIS-12-20-2743-PDN.
Garlic () is a widely consumed bulbous crop both worldwide and in Russia. About 200,000 tons of garlic is produced in Russia annually (https://rosstat.gov.ru/). Significant pre- and post-harvest losses of garlic regularly occur due to (Taylor et al., 2013). Since September 2018, rotting has been observed in Russia during garlic bulb storage (data of the Federal Scientific Vegetable Center, FSVC, Moscow Region). The outer bulb surface looked healthy, but underneath the integumentary scales, the cloves had light brown and brown spots. When grown, diseased plants were characterized by root and bulb disruption and leaf drying; for some cultivars, up to 100% of plants died. In January 2020, cv. Strelets and Dubkovsky bulbs, collected in July 2019, with rot symptoms, were taken from the FSVC storage. Necrotic clove tissue fragments (0.2-0.5 cm) were cut, sanitized with 70% ethanol for 3 min, rinsed with sterile water, and incubated on potato dextrose agar (PDA) with 1 mg/ml ampicillin at 22°C in the dark. Four single-spore cultures were obtained from four diseased bulbs. After 6 days of incubation, the isolates produced abundant aerial white mycelia and acquired a purple pigmentation. The hyphae were hyaline with septation. All isolates (Dubkovsky, Dubkovsky 2, Strelets, and Strelets 2) produced numerous oval unicellular microconidia without septa, 4.1 to 11.6 × 1.3 to 3.4 µm (n = 50) and very few macroconidia with 3-4 septa (21 to 26 × 3 to 4 µm (n = 30)), narrowed at both ends. The cultural and conidial characteristics of the isolates corresponded to species (Leslie and Summerell 2006). To determine the species, DNA was extracted from four isolates, and the internal transcribed spacer (ITS), and genes of translation elongation factor 1α () and subunits 1 and 2 of DNA-directed RNA polymerase II ( and ) were amplified and sequenced with primers ITS1/ITS4 (White et al. 1990), EF1/EF2 (O'Donnell et al. 1998a), RPB1-F5/RPB1-R8 (O'Donnell et al. 2010) and fRPB2-5F/fRPB2-7cR (Liu et al. 1999). The obtained sequences were identical for all four isolates. The isolate Strelets sequences were deposited in NCBI GenBank (MW149129 (ITS), MW161161 (), MW413302 () and MW413303 ()); their analysis in MLST (http://fusarium.mycobank.org) showed 98.8-99.8% similarity to (NRRL 13582, 13598 and others), which is part of the complex (O'Donnell et al. 1998b). The test on pathogenicity was performed two times according to (Leyronas et al. 2018). For this, three replicates of 10 cloves (cv. Strelets) were soaked in a conidial suspension (~10 conidia/ml; Strelets isolate) for 24 h. Ten control cloves were soaked in sterile water. The cloves were incubated on Petri dishes (5 cloves on a dish; on filter paper wettened with sterile water) in the dark at 23°C. After 5 days, brown lesions and white mycelium developed on the surface of the treated cloves. The taxonomic status of the fungus isolated from necrotic tissue was determined as according to the ITS, , and analysis. Garlic basal and bulb rot is known to be caused by f. sp. and (Snowdon 1990). This study is the first report of causing rot of garlic bulbs during storage in Russia. produces a variety of mycotoxins during bulb infestation, and our findings are important for diagnosing a disease and the use of garlic crop in culinary and medicine. Funding The reported study was funded by Russian Foundation for Basic Research, project number 20-316-70009. References: Leslie, J. F., and Summerell, B. A. 2006. Page 224 in: The Fusarium Laboratory Manual. Blackwell, Oxford, UK. https://doi.org/10.1002/9780470278376 Leyronas, C., et al. 2018. Plant Dis. 102:2658 https://doi.org/10.1094/PDIS-06-18-0962-PDN Liu, Y.J. et al. 1999. Mol. Biol. Evol. 16: 1799 https://doi.org/10.1093/oxfordjournals.molbev.a026092 O'Donnell, K, et al. 1998a. Proc Natl Acad Sci USA. 95(5):2044. https://doi.org/10.1073/pnas.95.5.2044. O'Donnell, et al. 1998b. Mycologia 90:465 O'Donnell, K., et al. 2010. J. Clin. Microbiol., 48: 3708 https://doi.org/10.1128/JCM.00989-10 Snowdon, A. L. Pages 250-252 in: A Color Atlas of Post-Harvest Diseases and Disorders of Fruits and Vegetables. Vol. 1. 1990. Wolfe Scientific, London. Taylor, A, et al. 2013. Plant Pathol. 62:103. https://doi.org/10.1111/j.1365-3059.2012.02624.x White, T. J., et al. 1990. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA.
大蒜()是一种在全球和俄罗斯都广泛种植的球茎作物。俄罗斯每年生产约20万吨大蒜(https://rosstat.gov.ru/)。由于(泰勒等人,2013年),大蒜在收获前和收获后经常出现重大损失。自2018年9月以来,俄罗斯在大蒜鳞茎储存期间观察到腐烂现象(莫斯科州联邦科学蔬菜中心的数据)。鳞茎外表面看起来健康,但在表皮鳞片下面,蒜瓣有浅棕色和棕色斑点。种植时,患病植株的特征是根系和鳞茎受损以及叶片干枯;对于一些品种,高达100%的植株死亡。2020年1月,从联邦科学蔬菜中心的储存中取出了2019年7月收集的带有腐烂症状的“斯特列利茨”和“杜布科夫斯基”品种的鳞茎。切下坏死蒜瓣组织碎片(0.2 - 0.5厘米),用70%乙醇消毒3分钟,用无菌水冲洗,然后在含有1毫克/毫升氨苄青霉素的马铃薯葡萄糖琼脂(PDA)上于22°C黑暗中培养。从四个患病鳞茎中获得了四个单孢子培养物。培养6天后,分离物产生了丰富的气生白色菌丝体并获得了紫色色素沉着。菌丝透明,有隔膜。所有分离物(杜布科夫斯基、杜布科夫斯基2、斯特列利茨和斯特列利茨2)产生了大量椭圆形单细胞无隔膜小分生孢子,4.1至11.6×1.3至3.4微米(n = 50),很少有具3 - 4个隔膜的大分生孢子(21至26×3至4微米(n = 30)),两端变窄。分离物的培养和分生孢子特征与物种(莱斯利和萨默雷尔,2006年)一致。为了确定物种,从四个分离物中提取DNA,并使用引物ITS1/ITS4(怀特等人,1990年)、EF1/EF2(奥唐奈等人,1998a)、RPB1 - F5/RPB1 - R8(奥唐奈等人,2010年)和fRPB2 - 5F/fRPB2 - 7cR(刘等人,1999年)对翻译延伸因子1α()以及DNA指导的RNA聚合酶II的亚基1和2(和)的基因进行扩增和测序。所有四个分离物获得的序列相同。“斯特列利茨”分离物的序列保存在NCBI基因库中(MW149129(ITS)、MW161161()、MW413302()和MW413303());它们在MLST(http://fusarium.mycobank.org)中的分析显示与(NRRL 13582、13598等)有98.8 - 99.8%的相似性,是复合体的一部分(奥唐奈等人,1998b)。根据(莱罗纳斯等人,2018年)进行了两次致病性测试。为此,将10个蒜瓣(“斯特列利茨”品种)的三个重复浸泡在分生孢子悬浮液(~10个分生孢子/毫升;“斯特列利茨”分离物)中24小时。10个对照蒜瓣浸泡在无菌水中。蒜瓣在培养皿(每个培养皿5个蒜瓣;放在用无菌水湿润的滤纸上)中于23°C黑暗中培养。5天后,处理过的蒜瓣表面出现褐色病斑和白色菌丝体。根据ITS、、和分析,从坏死组织中分离出的真菌的分类地位被确定为。已知大蒜基部和鳞茎腐烂是由f. sp. 和(斯诺登,1990年)引起的。本研究是俄罗斯关于在储存期间导致大蒜鳞茎腐烂的首次报道。在鳞茎侵染期间会产生多种霉菌毒素,我们的发现对于诊断疾病以及大蒜作物在烹饪和医学中的使用具有重要意义。资金来源 所报道的研究由俄罗斯基础研究基金会资助,项目编号20 - 316 - 70009。参考文献:莱斯利,J. F.,和萨默雷尔,B. A. 2006年。见:《镰刀菌实验室手册》第224页。布莱克韦尔出版社,英国牛津。https://doi.org/10.1002/9780470278376 莱罗纳斯,C.,等人。2018年。植物病害102:2658 https://doi.org/10.1094/PDIS - 06 - 18 - 0962 - PDN 刘,Y. J. 等人。1999年。分子生物学与进化16: 1799 https://doi.org/10.1093/oxfordjournals.molbev.a026092 奥唐奈,K,等人。1998a。美国国家科学院院刊95(5):2044。https://doi.org/10.1073/pnas.95.5.