State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China.
State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China; SKL of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
Int J Biol Macromol. 2021 Jul 1;182:237-243. doi: 10.1016/j.ijbiomac.2021.04.019. Epub 2021 Apr 6.
Silk fibroin (SF) protein is versatile for the application of biomaterials due to its excellent mechanical properties, biocompatibility and biodegradability. However, the efficient way to fabricate SF membranes with special structure is still challenging. Here, we develop an efficient and simple way to create SF membranes on the liquid (i.e. subphase) surface. It is essential to prepare highly concentrated SF solution with low surface tension by dissolving the degummed SF powders in 6% (w/v) LiBr/methanol solution by one step. 95 wt% polyethylene glycol (PEG) 200 and 30 wt% (NH)SO are the subphases, on which the SF solution spreads quickly, generating nonporous and microporous SF membranes (SFM-1 and SFM-2), respectively. PEG 200 causes more ordered molecular packing (β-sheets) in SFM-1. While Fast diffusion and denaturation of SF on (NH)SO solution lead to the formation of microporous, water-unstable membrane SFM-2. Both membranes have good transparency, hydrophilicty, and mechanical properties. To fabricate antibacterial biomaterials, we design a composite membrane by SFM-1 and SFM-2 sandwiching a layer of hydroxypropyl trimethylammonium chloride chitosan (HACC) to provide antibacterial functions. The sandwich membrane has good cell viability and antibacterial properties, showing potential use for biomedical materials.
丝素蛋白(SF)由于其优异的机械性能、生物相容性和可生物降解性,在生物材料的应用中具有多功能性。然而,制造具有特殊结构的 SF 膜的有效方法仍然具有挑战性。在这里,我们开发了一种在液体(即亚相)表面上制造 SF 膜的高效简单方法。通过将脱胶的 SF 粉末溶解在 6%(w/v)LiBr/甲醇溶液中一步制备具有低表面张力的高浓度 SF 溶液是至关重要的。95wt%聚乙二醇(PEG)200 和 30wt%(NH)SO 是亚相,SF 溶液在其上迅速扩展,分别生成无孔和微孔 SF 膜(SFM-1 和 SFM-2)。PEG 200 导致 SFM-1 中更有序的分子堆积(β-折叠)。而 SF 在(NH)SO 溶液上的快速扩散和变性导致形成微孔、水不稳定的膜 SFM-2。两种膜都具有良好的透明度、亲水性和机械性能。为了制造抗菌生物材料,我们设计了一种由 SFM-1 和 SFM-2 夹层的复合膜,夹一层羟丙基三甲基氯化铵壳聚糖(HACC)以提供抗菌功能。夹层膜具有良好的细胞活力和抗菌性能,显示出在生物医学材料方面的应用潜力。