Suppr超能文献

双进程脑线粒体分离技术保持了线粒体功能并阐明了其蛋白组成。

Dual-process brain mitochondria isolation preserves function and clarifies protein composition.

机构信息

Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242.

Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106.

出版信息

Proc Natl Acad Sci U S A. 2021 Mar 16;118(11). doi: 10.1073/pnas.2019046118.

Abstract

The brain requires continuously high energy production to maintain ion gradients and normal function. Mitochondria critically undergird brain energetics, and mitochondrial abnormalities feature prominently in neuropsychiatric disease. However, many unique aspects of brain mitochondria composition and function are poorly understood. Developing improved neuroprotective therapeutics thus requires more comprehensively understanding brain mitochondria, including accurately delineating protein composition and channel-transporter functional networks. However, obtaining pure mitochondria from the brain is especially challenging due to its distinctive lipid and cell structure properties. As a result, conflicting reports on protein localization to brain mitochondria abound. Here we illustrate this problem with the neuropsychiatric disease-associated L-type calcium channel Ca1.2α1 subunit previously observed in crude mitochondria. We applied a dual-process approach to obtain functionally intact versus compositionally pure brain mitochondria. One branch utilizes discontinuous density gradient centrifugation to isolate semipure mitochondria suitable for functional assays but unsuitable for protein localization because of endoplasmic reticulum (ER) contamination. The other branch utilizes self-forming density gradient ultracentrifugation to remove ER and yield ultrapure mitochondria that are suitable for investigating protein localization but functionally compromised. Through this process, we evaluated brain mitochondria protein content and observed the absence of Ca1.2α1 and other previously reported mitochondrial proteins, including the NMDA receptor, ryanodine receptor 1, monocarboxylate transporter 1, excitatory amino acid transporter 1, and glyceraldehyde 3-phosphate dehydrogenase. Conversely, we confirmed mitochondrial localization of several plasma membrane proteins previously reported to also localize to mitochondria. We expect this dual-process isolation procedure will enhance understanding of brain mitochondria in both health and disease.

摘要

大脑需要持续产生高能量来维持离子梯度和正常功能。线粒体为大脑的能量代谢提供了关键支撑,而线粒体异常在神经精神疾病中表现得尤为突出。然而,大脑中线粒体的组成和功能的许多独特方面仍未被充分了解。因此,开发更好的神经保护治疗方法需要更全面地了解大脑线粒体,包括准确描绘蛋白质组成和通道-转运体功能网络。然而,由于其独特的脂质和细胞结构特性,从大脑中获得纯线粒体尤其具有挑战性。因此,关于蛋白质在大脑线粒体中的定位存在很多相互矛盾的报告。在这里,我们用先前在粗线粒体中观察到的与神经精神疾病相关的 L 型钙通道 Ca1.2α1 亚基来说明这个问题。我们采用了双过程方法来获得功能完整但组成纯净的大脑线粒体。一个分支利用不连续密度梯度离心来分离半纯线粒体,这些线粒体适合进行功能测定,但由于内质网(ER)污染,不适合蛋白质定位。另一个分支利用自形成密度梯度超速离心来去除 ER,并获得适合研究蛋白质定位但功能受损的超纯线粒体。通过这个过程,我们评估了大脑线粒体的蛋白质含量,并观察到 Ca1.2α1 和其他先前报道的线粒体蛋白(包括 NMDA 受体、ryanodine 受体 1、单羧酸转运蛋白 1、兴奋性氨基酸转运蛋白 1 和甘油醛 3-磷酸脱氢酶)的缺失。相反,我们证实了几个先前报道定位于线粒体的质膜蛋白的线粒体定位。我们期望这种双过程分离程序将增强对健康和疾病状态下大脑线粒体的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb06/7980376/7740adfc227b/pnas.2019046118fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验