Pediatric Neurology, Pediatrics, Weill Cornell Medicine of Cornell University, New York, NY, 10065, USA.
Feil Family Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York, NY, 10065, USA.
Mol Psychiatry. 2021 Jun;26(6):2286-2298. doi: 10.1038/s41380-020-0730-8. Epub 2020 Apr 24.
Post-traumatic stress disorder (PTSD) is characterized by persistent fear memory of remote traumatic events, mental re-experiencing of the trauma, long-term cognitive deficits, and PTSD-associated hippocampal dysfunction. Extinction-based therapeutic approaches acutely reduce fear. However, many patients eventually relapse to the original conditioned fear response. Thus, understanding the underlying molecular mechanisms of this condition is critical to developing new treatments for patients. Mutations in the neuropsychiatric risk gene CACNA1C, which encodes the Ca1.2 isoform of the L-type calcium channel, have been implicated in both PTSD and highly comorbid neuropsychiatric conditions, such as anxiety and depression. Here, we report that male mice with global heterozygous loss of cacna1c exhibit exacerbated contextual fear that persists at remote time points (up to 180 days after shock), despite successful acute extinction training, reminiscent of PTSD patients. Because dopamine has been implicated in contextual fear memory, and Ca1.2 is a downstream target of dopamine D1-receptor (D1R) signaling, we next generated mice with specific deletion of cacna1c from D1R-expressing neurons (D1-cacna1c mice). Notably, D1-cacna1c mice also show the same exaggerated remote contextual fear, as well as persistently elevated anxiety-like behavior and impaired spatial memory at remote time points, reminiscent of chronic anxiety in treatment-resistant PTSD. We also show that D1-cacna1c mice exhibit elevated death of young hippocampal neurons, and that treatment with the neuroprotective agent P7C3-A20 eradicates persistent remote fear. Augmenting survival of young hippocampal neurons may thus provide an effective therapeutic approach for promoting durable remission of PTSD, particularly in patients with CACNA1C mutations or other genetic aberrations that impair calcium signaling or disrupt the survival of young hippocampal neurons.
创伤后应激障碍(PTSD)的特征是对远程创伤事件的持续恐惧记忆、对创伤的精神再体验、长期认知缺陷以及与 PTSD 相关的海马功能障碍。基于消除的治疗方法可急性减少恐惧。然而,许多患者最终会复发原始的条件恐惧反应。因此,了解这种情况的潜在分子机制对于为患者开发新的治疗方法至关重要。编码 L 型钙通道 Ca1.2 同工型的神经精神风险基因 CACNA1C 的突变与 PTSD 以及高度共病的神经精神疾病(如焦虑和抑郁)有关。在这里,我们报告说,全局杂合性缺失 cacna1c 的雄性小鼠表现出增强的情境恐惧,即使在成功的急性消除训练后,这种恐惧也会持续很长时间(在休克后长达 180 天),这类似于 PTSD 患者。由于多巴胺与情境恐惧记忆有关,并且 Ca1.2 是多巴胺 D1 受体(D1R)信号的下游靶标,因此我们接下来生成了在表达 D1R 的神经元中特异性缺失 cacna1c 的小鼠(D1-cacna1c 小鼠)。值得注意的是,D1-cacna1c 小鼠也表现出同样的过度远程情境恐惧,以及在远程时间点持续升高的焦虑样行为和受损的空间记忆,类似于治疗抵抗性 PTSD 中的慢性焦虑。我们还表明,D1-cacna1c 小鼠表现出年轻海马神经元死亡增加,并且神经保护剂 P7C3-A20 的治疗消除了持久的远程恐惧。因此,增强年轻海马神经元的存活可能为促进 PTSD 的持久缓解提供有效的治疗方法,特别是在 CACNA1C 突变或其他导致钙信号受损或破坏年轻海马神经元存活的遗传异常的患者中。