Suppr超能文献

具有快速可部署和可变形的 3D 介观结构,在多模态生物医学设备中有应用。

Rapidly deployable and morphable 3D mesostructures with applications in multimodal biomedical devices.

机构信息

Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.

Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China.

出版信息

Proc Natl Acad Sci U S A. 2021 Mar 16;118(11). doi: 10.1073/pnas.2026414118.

Abstract

Structures that significantly and rapidly change their shapes and sizes upon external stimuli have widespread applications in a diversity of areas. The ability to miniaturize these deployable and morphable structures is essential for applications in fields that require high-spatial resolution or minimal invasiveness, such as biomechanics sensing, surgery, and biopsy. Despite intensive studies on the actuation mechanisms and material/structure strategies, it remains challenging to realize deployable and morphable structures in high-performance inorganic materials at small scales (e.g., several millimeters, comparable to the feature size of many biological tissues). The difficulty in integrating actuation materials increases as the size scales down, and many types of actuation forces become too small compared to the structure rigidity at millimeter scales. Here, we present schemes of electromagnetic actuation and design strategies to overcome this challenge, by exploiting the mechanics-guided three-dimensional (3D) assembly to enable integration of current-carrying metallic or magnetic films into millimeter-scale structures that generate controlled Lorentz forces or magnetic forces under an external magnetic field. Tailored designs guided by quantitative modeling and developed scaling laws allow formation of low-rigidity 3D architectures that deform significantly, reversibly, and rapidly by remotely controlled electromagnetic actuation. Reconfigurable mesostructures with multiple stable states can be also achieved, in which distinct 3D configurations are maintained after removal of the magnetic field. Demonstration of a functional device that combines the deep and shallow sensing for simultaneous measurements of thermal conductivities in bilayer films suggests the promising potential of the proposed strategy toward multimodal sensing of biomedical signals.

摘要

在外部刺激下能够快速显著改变形状和尺寸的结构在多个领域有着广泛的应用。将这些可展开和可变形结构微型化的能力对于需要高空间分辨率或最小侵入性的应用至关重要,例如生物力学传感、手术和活检。尽管对驱动机制和材料/结构策略进行了深入研究,但在小尺寸(例如几个毫米,与许多生物组织的特征尺寸相当)的高性能无机材料中实现可展开和可变形结构仍然具有挑战性。随着尺寸的缩小,集成驱动材料的难度增加,许多类型的驱动力与毫米尺度的结构刚性相比变得太小。在这里,我们提出了电磁驱动方案和设计策略,通过利用力学引导的三维(3D)组装,将载流金属或磁性薄膜集成到毫米级结构中,在外部磁场下产生受控的洛伦兹力或磁力,从而克服了这一挑战。受定量建模指导的定制设计和开发的扩展定律允许形成低刚性的 3D 架构,这些架构可通过远程控制的电磁驱动显著、可逆和快速地变形。还可以实现具有多个稳定状态的可重构介观结构,其中在去除磁场后可以保持不同的 3D 配置。演示了一个功能器件,该器件结合了深层和浅层传感,可同时测量双层膜的热导率,这表明所提出的策略在生物医学信号的多模态传感方面具有广阔的应用前景。

相似文献

1
Rapidly deployable and morphable 3D mesostructures with applications in multimodal biomedical devices.
Proc Natl Acad Sci U S A. 2021 Mar 16;118(11). doi: 10.1073/pnas.2026414118.
3
Remotely Controlled, Reversible, On-Demand Assembly and Reconfiguration of 3D Mesostructures via Liquid Crystal Elastomer Platforms.
ACS Appl Mater Interfaces. 2021 Feb 24;13(7):8929-8939. doi: 10.1021/acsami.0c21371. Epub 2021 Feb 12.
4
Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics.
Nat Mater. 2018 Mar;17(3):268-276. doi: 10.1038/s41563-017-0011-3. Epub 2018 Jan 29.
5
Magnetically encoded 3D mesostructure with high-order shape morphing and high-frequency actuation.
Natl Sci Rev. 2022 Aug 16;9(11):nwac163. doi: 10.1093/nsr/nwac163. eCollection 2022 Nov.
6
Geometrically reconfigurable 3D mesostructures and electromagnetic devices through a rational bottom-up design strategy.
Sci Adv. 2020 Jul 22;6(30):eabb7417. doi: 10.1126/sciadv.abb7417. eCollection 2020 Jul.
7
Buckling and twisting of advanced materials into morphable 3D mesostructures.
Proc Natl Acad Sci U S A. 2019 Jul 2;116(27):13239-13248. doi: 10.1073/pnas.1901193116. Epub 2019 Jun 19.
8
Design and Fabrication of Heterogeneous, Deformable Substrates for the Mechanically Guided 3D Assembly.
ACS Appl Mater Interfaces. 2019 Jan 23;11(3):3482-3492. doi: 10.1021/acsami.8b19187. Epub 2019 Jan 8.
9
Mechanically-Guided Deterministic Assembly of 3D Mesostructures Assisted by Residual Stresses.
Small. 2017 Jun;13(24). doi: 10.1002/smll.201700151. Epub 2017 May 10.

引用本文的文献

1
Silicon nano-kirigami with controlled plastic, elastic and hysteretic deformations.
Nat Commun. 2025 Jul 1;16(1):5512. doi: 10.1038/s41467-025-61405-w.
3
Achieving symmetric snap-through buckling via designed magnetic actuation.
Sci Adv. 2025 May 16;11(20):eadw1259. doi: 10.1126/sciadv.adw1259. Epub 2025 May 14.
4
Theoretical Model of the Island Effect in Flexible Electronics under Equal Biaxial Stretching.
Small. 2025 May;21(19):e2409632. doi: 10.1002/smll.202409632. Epub 2025 Apr 7.
5
A Flexible, Large-Scale Sensing Array with Low-Power In-Sensor Intelligence.
Research (Wash D C). 2024 Nov 13;7:0497. doi: 10.34133/research.0497. eCollection 2024.
8
Damage-free dry transfer method using stress engineering for high-performance flexible two- and three-dimensional electronics.
Nat Mater. 2024 Oct;23(10):1411-1420. doi: 10.1038/s41563-024-01931-y. Epub 2024 Jun 21.
9
Optoelectronically navigated nano-kirigami microrotors.
Sci Adv. 2024 Apr 26;10(17):eadn7582. doi: 10.1126/sciadv.adn7582. Epub 2024 Apr 24.
10
Mechanically-Guided 3D Assembly for Architected Flexible Electronics.
Chem Rev. 2023 Sep 27;123(18):11137-11189. doi: 10.1021/acs.chemrev.3c00335. Epub 2023 Sep 7.

本文引用的文献

2
Biohybrid robot powered by an antagonistic pair of skeletal muscle tissues.
Sci Robot. 2018 May 30;3(18). doi: 10.1126/scirobotics.aat4440.
3
Ferromagnetic soft continuum robots.
Sci Robot. 2019 Aug 28;4(33). doi: 10.1126/scirobotics.aax7329.
4
Untethered soft robotic matter with passive control of shape morphing and propulsion.
Sci Robot. 2019 Aug 21;4(33). doi: 10.1126/scirobotics.aax7044.
5
Inflatable soft jumper inspired by shell snapping.
Sci Robot. 2020 May 20;5(42). doi: 10.1126/scirobotics.abb1967.
6
Untethered control of functional origami microrobots with distributed actuation.
Proc Natl Acad Sci U S A. 2020 Sep 29;117(39):24096-24101. doi: 10.1073/pnas.2013292117. Epub 2020 Sep 14.
7
Geometrically reconfigurable 3D mesostructures and electromagnetic devices through a rational bottom-up design strategy.
Sci Adv. 2020 Jul 22;6(30):eabb7417. doi: 10.1126/sciadv.abb7417. eCollection 2020 Jul.
8
Buckle-Delamination-Enabled Stretchable Silver Nanowire Conductors.
ACS Appl Mater Interfaces. 2020 Sep 16;12(37):41696-41703. doi: 10.1021/acsami.0c09775. Epub 2020 Sep 1.
9
Soft electromagnetic actuators.
Sci Adv. 2020 Jun 26;6(26):eabc0251. doi: 10.1126/sciadv.abc0251. eCollection 2020 Jun.
10
Soft three-dimensional network materials with rational bio-mimetic designs.
Nat Commun. 2020 Mar 4;11(1):1180. doi: 10.1038/s41467-020-14996-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验