Department of Computational Brain Imaging, ATR Neural Information Analysis Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan; Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan.
Department of Computational Brain Imaging, ATR Neural Information Analysis Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan; Computational Brain Dynamics Team, RIKEN Center for Advanced Intelligence Project, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan.
Neuroimage. 2021 Aug 1;236:118034. doi: 10.1016/j.neuroimage.2021.118034. Epub 2021 Apr 8.
Magnetoencephalography (MEG) offers a unique way to noninvasively investigate millisecond-order cortical activities by mapping sensor signals (magnetic fields outside the head) to cortical current sources using current source reconstruction methods. Current source reconstruction is defined as an ill-posed inverse problem, since the number of sensors is less than the number of current sources. One powerful approach to solving this problem is to use functional MRI (fMRI) data as a spatial constraint, although it boosts the cost of measurement and the burden on subjects. Here, we show how to use the meta-analysis fMRI data synthesized from thousands of papers instead of the individually recorded fMRI data. To mitigate the differences between the meta-analysis and individual data, the former are imported as prior information of the hierarchical Bayesian estimation. Using realistic simulations, we found out the performance of current source reconstruction using meta-analysis fMRI data to be better than that using low-quality individual fMRI data and conventional methods. By applying experimental data of a face recognition task, we qualitatively confirmed that group analysis results using the meta-analysis fMRI data showed a tendency similar to the results using the individual fMRI data. Our results indicate that the use of meta-analysis fMRI data improves current source reconstruction without additional measurement costs. We assume the proposed method would have greater effect for modalities with lower measurement costs, such as optically pumped magnetometers.
脑磁图(MEG)通过使用电流源重建方法将传感器信号(头部外的磁场)映射到皮质电流源,提供了一种非侵入性地研究毫秒级皮质活动的独特方法。电流源重建被定义为不适定的逆问题,因为传感器的数量少于电流源的数量。解决这个问题的一种有力方法是使用功能磁共振成像(fMRI)数据作为空间约束,尽管这会增加测量成本和受试者的负担。在这里,我们展示了如何使用从数千篇论文合成的荟萃分析 fMRI 数据来代替个体记录的 fMRI 数据。为了减轻荟萃分析数据与个体数据之间的差异,将前者作为分层贝叶斯估计的先验信息导入。通过使用现实的模拟,我们发现使用荟萃分析 fMRI 数据进行电流源重建的性能优于使用低质量的个体 fMRI 数据和传统方法。通过应用人脸识别任务的实验数据,我们定性地确认了使用荟萃分析 fMRI 数据进行的组分析结果与使用个体 fMRI 数据的结果具有相似的趋势。我们的结果表明,使用荟萃分析 fMRI 数据可以改善电流源重建,而不会增加额外的测量成本。我们假设,对于测量成本较低的模态,如光泵磁力计,所提出的方法会产生更大的效果。