Chitkara College of Pharmacy, Chitkara University, Punjab, India; Govt. College of Pharmacy, Rohru, District Shimla, Himachal Pradesh 171207, India.
Chitkara College of Pharmacy, Chitkara University, Punjab, India.
Mitochondrion. 2021 Jul;59:48-57. doi: 10.1016/j.mito.2021.04.004. Epub 2021 Apr 8.
Alzheimer's disease (AD) is the inoperable, incapacitating, neuropsychiatric, and degenerative manifestation that drastically affects human life quality. The current medications target extra-neuronal senile plaques, oxidative stress, neuroinflammation, intraneuronal neurofibrillary tangles, cholinergic deficits, and excitotoxicity. Among novel pathways and targets, bioenergetic and resultant mitochondrial dysfunction has been recognized as essential factors that decide the neuronal fate and consequent neurodegeneration in AD. The crucial attributes of mitochondria, including bioenergesis, signaling, sensing, integrating, and transmitting biological signals contribute to optimum networking of neuronal dynamics and make them indispensable for cell survival. In AD, mitochondrial dysfunction and mitophagy are a preliminary and critical event that aggravates the pathological cascade. Stress is known to promote and exaggerate the neuropathological alteration during neurodegeneration and metabolic impairments, especially in the cortico-limbic system, besides adversely affecting the normal physiology and mitochondrial dynamics. Stress involves the allocation of energy resources for neuronal survival. Chronic and aggravated stress response leads to excessive release of glucocorticoids by activation of the hypothalamic-pituitaryadrenal (HPA) axis. By acting through their receptors, glucocorticoids influence adverse mitochondrial changes and alter mtDNA transcription, mtRNA expression, hippocampal mitochondrial network, and ultimately mitochondrial physiology. Chronic stress also affects mitochondrial dynamics by changing metabolic and neuro-endocrinal signalling, aggravating oxidative stress, provoking inflammatory mediators, altering tropic factors, influencing gene expression, and modifying epigenetic pathways. Thus, exploring chronic stress-induced glucocorticoid dysregulation and resultant bio-behavioral and psychosomatic mitochondrial alterations may be a feasible narrative to investigate and unravel the mysterious pathobiology of AD.
阿尔茨海默病(AD)是一种无法手术、使人丧失能力的神经精神和退行性疾病,极大地影响了人类的生活质量。目前的药物针对的是神经元外的老年斑、氧化应激、神经炎症、神经元内的神经原纤维缠结、胆碱能缺陷和兴奋性毒性。在新的途径和靶点中,生物能量和由此产生的线粒体功能障碍已被认为是决定 AD 中神经元命运和随后神经退行性变的重要因素。线粒体的关键属性,包括生物能量、信号转导、传感、整合和传递生物信号,有助于神经元动力学的最佳网络连接,使其成为细胞存活所必需的。在 AD 中,线粒体功能障碍和自噬是加重病理级联的初步和关键事件。众所周知,压力会促进和加剧神经退行性变和代谢损伤过程中的神经病理改变,特别是在皮质-边缘系统,此外还会对正常生理学和线粒体动力学产生不利影响。压力涉及为神经元存活分配能量资源。慢性和加重的应激反应会通过激活下丘脑-垂体-肾上腺(HPA)轴导致糖皮质激素的过度释放。糖皮质激素通过其受体作用,影响不利的线粒体变化,改变 mtDNA 转录、mtRNA 表达、海马线粒体网络,并最终改变线粒体生理学。慢性应激还通过改变代谢和神经内分泌信号、加剧氧化应激、引发炎症介质、改变营养因子、影响基因表达和修饰表观遗传途径来影响线粒体动力学。因此,探索慢性应激诱导的糖皮质激素失调以及由此产生的生物行为和身心线粒体改变,可能是研究和揭示 AD 神秘病理生物学的一种可行方法。
Mitochondrion. 2021-7
Mol Neurobiol. 2021-5
Curr Drug Targets. 2020
Alzheimers Res Ther. 2020-1-13
Curr Pharm Des. 2014
Biochim Biophys Acta Mol Basis Dis. 2016-12-13
Neuroscientist. 2024-8
J Alzheimers Dis. 2020
Biomolecules. 2021-4-30
Front Aging Neurosci. 2024-12-17
Alzheimers Res Ther. 2024-5-21
Int J Mol Med. 2024-5
Neurochem Res. 2023-6
Inflammopharmacology. 2022-12
Neural Regen Res. 2023-5