Department of Molecular and Cell Biology, University of Cape Town, Cape Town, 7700, South Africa.
Electron Microscope Unit, University of Cape Town, Cape Town, 7700, South Africa.
Sci Rep. 2023 Aug 15;13(1):13248. doi: 10.1038/s41598-023-40130-8.
Propionic acid (PPA) is used to study the role of mitochondrial dysfunction in neurodevelopmental conditions like autism spectrum disorders. PPA is known to disrupt mitochondrial biogenesis, metabolism, and turnover. However, the effect of PPA on mitochondrial dynamics, fission, and fusion remains challenging to study due to the complex temporal nature of these mechanisms. Here, we use complementary quantitative visualization techniques to examine how PPA influences mitochondrial ultrastructure, morphology, and dynamics in neuronal-like SH-SY5Y cells. PPA (5 mM) induced a significant decrease in mitochondrial area (p < 0.01), Feret's diameter and perimeter (p < 0.05), and in area (p < 0.01). Mitochondrial event localiser analysis demonstrated a significant increase in fission and fusion events (p < 0.05) that preserved mitochondrial network integrity under stress. Moreover, mRNA expression of cMYC (p < 0.0001), NRF1 (p < 0.01), TFAM (p < 0.05), STOML2 (p < 0.0001), and OPA1 (p < 0.01) was significantly decreased. This illustrates a remodeling of mitochondrial morphology, biogenesis, and dynamics to preserve function under stress. Our data provide new insights into the influence of PPA on mitochondrial dynamics and highlight the utility of visualization techniques to study the complex regulatory mechanisms involved in the mitochondrial stress response.
丙酸(PPA)用于研究线粒体功能障碍在自闭症谱系障碍等神经发育状况中的作用。已知 PPA 会破坏线粒体生物发生、代谢和周转。然而,由于这些机制的复杂时间性质,PPA 对线粒体动力学、分裂和融合的影响仍然难以研究。在这里,我们使用互补的定量可视化技术来研究 PPA 如何影响神经元样 SH-SY5Y 细胞中的线粒体超微结构、形态和动力学。PPA(5 mM)诱导线粒体面积显著减少(p<0.01),Feret 直径和周长(p<0.05)以及面积(p<0.01)减少。线粒体事件定位器分析表明,分裂和融合事件显著增加(p<0.05),在应激下保持线粒体网络完整性。此外,cMYC(p<0.0001)、NRF1(p<0.01)、TFAM(p<0.05)、STOML2(p<0.0001)和 OPA1(p<0.01)的 mRNA 表达显著降低。这说明了线粒体形态、生物发生和动力学的重塑,以在应激下维持功能。我们的数据提供了 PPA 对线粒体动力学影响的新见解,并强调了可视化技术在研究线粒体应激反应中涉及的复杂调节机制的有用性。