Department of Physical Medicine and Rehabilitation, Physical Therapy Program, University of Colorado, Aurora, CO.
Department of Clinical and Scientific Affairs, Hanger Clinic, Austin, TX.
Prosthet Orthot Int. 2021 Jun 1;45(3):268-275. doi: 10.1097/PXR.0000000000000001.
Prosthetic rehabilitation decisions depend on estimating a patient's mobility potential. However, no validated prediction models of mobility outcomes exist for people with lower-limb amputation (LLA).
To develop and test predictions for self-reported mobility after LLA, using the Prosthetic Limb Users Survey of Mobility (PLUS-M).
This is a retrospective cohort analysis.
Eight hundred thirty-one patient records (1,860 PLUS-M observations) were used to develop and test a neighbors-based prediction model, using previous patient data to predict the 6-month PLUS-M T-score trajectory for a new patient (based on matching characteristics). The prediction model was developed in a training data set (n = 552 patients) and tested in an out-of-sample data set of 279 patients with later visit dates. Prediction performance was assessed using bias, coverage, and precision. Prediction calibration was also assessed.
The average prediction bias for the model was 0.01 SDs, average coverage was 0.498 (ideal proportion within the 50% prediction interval = 0.5), and prediction interval was 8.4 PLUS-M T-score points (40% improvement over population-level estimates). Predictions were well calibrated, with the median predicted scores falling within the standard error of the median of observed scores, across all deciles of the data.
This neighbors-based prediction approach allows for accurate estimates of PLUS-M T-score trajectories for people with LLA.
义肢康复决策取决于对患者移动能力的预估。然而,下肢截肢患者(LLA)的移动能力预后尚无经过验证的预测模型。
使用义肢使用者移动性调查(PLUS-M)开发并检验用于预测 LLA 后自我报告移动能力的模型。
这是一项回顾性队列分析。
使用 831 份患者记录(1860 个 PLUS-M 观察值),采用基于邻居的预测模型,使用先前患者的数据来预测新患者的 6 个月 PLUS-M T 分数轨迹(基于匹配特征)。该预测模型在训练数据集(n = 552 例患者)中开发,并在样本外数据集(n = 279 例就诊日期较晚的患者)中进行检验。采用偏倚、覆盖度和精密度来评估预测性能。还评估了预测校准度。
模型的平均预测偏倚为 0.01 个标准差,平均覆盖度为 0.498(理想的 50%预测区间内的比例= 0.5),预测区间为 8.4 PLUS-M T 分数点(比人群水平估计值提高 40%)。预测结果具有良好的校准度,在数据的所有十分位数中,预测得分中位数都落在观察得分中位数的标准误差范围内。
这种基于邻居的预测方法可以准确估计 LLA 患者的 PLUS-M T 分数轨迹。