Suppr超能文献

信号指纹识别作为一种识别传导不均一性的新型诊断工具。

Signal Fingerprinting as a Novel Diagnostic Tool to Identify Conduction Inhomogeneity.

作者信息

Ye Ziliang, van Schie Mathijs S, de Groot Natasja M S

机构信息

Department of Cardiology, Erasmus Medical Center, Rotterdam, Netherlands.

出版信息

Front Physiol. 2021 Mar 26;12:652128. doi: 10.3389/fphys.2021.652128. eCollection 2021.

Abstract

BACKGROUND

Inhomogeneous intra-atrial conduction facilitates both initiation and perpetuation of atrial fibrillation (AF) and is reflected in electrogram (EGM) morphology.

OBJECTIVE

The primary objective of this study is to investigate regional differences in features of different EGM types during sinus rhythm (SR) and to design a patient-specific signal fingerprint, which quantifies the severity and extensiveness of inhomogeneity in conduction.

METHODS

Patients ( = 189, 86% male; mean age 65 ± 9 years) undergoing coronary artery bypass grafting (CABG) underwent high-resolution mapping of the right atrium (RA), left atrium (LA), and pulmonary vein area (PVA) including Bachmann's bundle (BB). EGMs during 5 s of SR were classified as single potentials (SPs), short double potentials (SDPs, interval between deflections < 15 ms), long double potentials (LDPs, deflection interval > 15 ms), or fractionated potentials (FPs, ≥3 deflections). Of all SPs, differences in relative R- and S-wave amplitude were calculated (R/S ratios). Time difference between first and last deflection was determined (fractionation duration, FD) and potentials with amplitudes < 1.0 mV were labeled as low-voltage. Conduction block (CB) was defined as a difference in local activation time (LAT) between adjacent electrodes of ≥12 ms.

RESULTS

A total of 1,763,593 EGMs (9,331 ± 3,336 per patient) were classified (Table 1).

CONCLUSION

The signal fingerprint, consisting of quantified EGM features, including the R/S ratio of SPs, the relative frequency distribution of unipolar voltages, the proportion of low-voltage areas, the proportion of the different types of EGMs, and durations of LDP and FDP, may serve as a diagnostic tool to determine the severity and extensiveness of conduction inhomogeneity. Further studies are required to determine whether the signal fingerprint can be used to identify patients at risk for AF onset or progression.

摘要

背景

心房内传导不均一促进心房颤动(AF)的起始和持续,且反映在心电图(EGM)形态上。

目的

本研究的主要目的是调查窦性心律(SR)期间不同EGM类型特征的区域差异,并设计一种针对患者的信号指纹,以量化传导不均一的严重程度和范围。

方法

接受冠状动脉旁路移植术(CABG)的患者(n = 189,86%为男性;平均年龄65±9岁)接受了右心房(RA)、左心房(LA)和肺静脉区域(PVA)包括巴赫曼束(BB)的高分辨率标测。SR期间5秒的EGM被分类为单电位(SPs)、短双电位(SDPs,偏转间期<15毫秒)、长双电位(LDPs,偏转间期>15毫秒)或碎裂电位(FPs,≥3次偏转)。在所有SPs中,计算相对R波和S波振幅的差异(R/S比值)。确定首次和末次偏转之间的时间差(碎裂持续时间,FD),振幅<1.0 mV的电位被标记为低电压。传导阻滞(CB)定义为相邻电极之间局部激动时间(LAT)的差异≥12毫秒。

结果

共分类了1,763,593个EGM(每位患者9,331±3,336个)(表1)。

结论

由量化的EGM特征组成的信号指纹,包括SPs的R/S比值、单极电压的相对频率分布、低电压区域的比例、不同类型EGM的比例以及LDP和FDP的持续时间,可作为一种诊断工具来确定传导不均一的严重程度和范围。需要进一步研究以确定信号指纹是否可用于识别有AF发作或进展风险的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6501/8033016/76f67bf7e5d2/fphys-12-652128-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验