Suppr超能文献

一种带有折纸致动器的紧凑型软机器人手腕护具。

A Compact Soft Robotic Wrist Brace With Origami Actuators.

作者信息

Liu Sicong, Fang Zhonggui, Liu Jianhui, Tang Kailuan, Luo Jianwen, Yi Juan, Hu Xinyao, Wang Zheng

机构信息

Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China.

Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, China.

出版信息

Front Robot AI. 2021 Mar 25;8:614623. doi: 10.3389/frobt.2021.614623. eCollection 2021.

Abstract

Wrist disability caused by a series of diseases or injuries hinders the patient's capability to perform activities of daily living (ADL). Rehabilitation devices for the wrist motor function have gained popularity among clinics and researchers due to the convenience of self-rehabilitation. The inherent compliance of soft robots enabled safe human-robot interaction and light-weight characteristics, providing new possibilities to develop wearable devices. Compared with the conventional apparatus, soft robotic wearable rehabilitation devices showed advantages in flexibility, cost, and comfort. In this work, a compact and low-profile soft robotic wrist brace was proposed by directly integrating eight soft origami-patterned actuators on the commercially available wrist brace. The linear motion of the actuators was defined by their origami pattern. The extensions of the actuators were constrained by the brace fabrics, deriving the motions of the wrist joint, i.e., extension/flexion, ulnar/radial deviation. The soft actuators were made of ethylene-vinyl acetate by blow molding, achieving mass-production capability, low cost, and high repeatability. The design and fabrication of the soft robotic wrist brace are presented in this work. The experiments on the range of motion, output force, wearing position adaptivity, and performance under disturbance have been carried out with results analyzed. The modular soft actuator approach of design and fabrication of the soft robotic wrist brace has a wide application potential in wearable devices.

摘要

一系列疾病或损伤导致的手腕残疾会阻碍患者进行日常生活活动(ADL)的能力。手腕运动功能康复设备因其自我康复的便利性而在临床和研究人员中受到欢迎。软机器人的固有柔顺性实现了安全的人机交互以及轻量化特性,为开发可穿戴设备提供了新的可能性。与传统器械相比,软机器人可穿戴康复设备在灵活性、成本和舒适性方面具有优势。在这项工作中,通过将八个软折纸图案的致动器直接集成在市售的手腕支架上,提出了一种紧凑且外形低矮的软机器人手腕支架。致动器的直线运动由其折纸图案定义。致动器的伸展受到支架织物的限制,从而产生腕关节的运动,即伸展/弯曲、尺侧/桡侧偏斜。软致动器由乙烯 - 醋酸乙烯酯通过吹塑制成,实现了大规模生产能力、低成本和高重复性。本文介绍了软机器人手腕支架的设计与制造。进行了关于运动范围、输出力、佩戴位置适应性和干扰下性能的实验,并对结果进行了分析。软机器人手腕支架的模块化软致动器设计和制造方法在可穿戴设备中具有广泛的应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f210/8027511/1751cec8c277/frobt-08-614623-g001.jpg

相似文献

1
A Compact Soft Robotic Wrist Brace With Origami Actuators.
Front Robot AI. 2021 Mar 25;8:614623. doi: 10.3389/frobt.2021.614623. eCollection 2021.
2
A Soft Robotic Wearable Wrist Device for Kinesthetic Haptic Feedback.
Front Robot AI. 2018 Jul 24;5:83. doi: 10.3389/frobt.2018.00083. eCollection 2018.
3
Modular Soft Robot with Origami Skin for Versatile Applications.
Soft Robot. 2023 Aug;10(4):785-796. doi: 10.1089/soro.2022.0064. Epub 2023 Mar 23.
4
A Wearable Soft Robotic Exoskeleton for Hip Flexion Rehabilitation.
Front Robot AI. 2022 Apr 28;9:835237. doi: 10.3389/frobt.2022.835237. eCollection 2022.
5
3D-Printed Origami Actuators for a Multianimal-Inspired Soft Robot with Amphibious Locomotion and Tongue Hunting.
Soft Robot. 2024 Aug;11(4):650-669. doi: 10.1089/soro.2023.0079. Epub 2024 Feb 8.
7
An Origami-Based Soft Robotic Actuator for Upper Gastrointestinal Endoscopic Applications.
Front Robot AI. 2021 May 10;8:664720. doi: 10.3389/frobt.2021.664720. eCollection 2021.
8
Soft Origami Optical-Sensing Actuator for Underwater Manipulation.
Front Robot AI. 2021 Mar 10;7:616128. doi: 10.3389/frobt.2020.616128. eCollection 2020.
10
Effect of Segment Types on Characterization of Soft Sensing Textile Actuators for Soft Wearable Robots.
Biomimetics (Basel). 2022 Dec 19;7(4):249. doi: 10.3390/biomimetics7040249.

引用本文的文献

1
Soft pneumatic muscles for post-stroke lower limb ankle rehabilitation: leveraging the potential of soft robotics to optimize functional outcomes.
Front Bioeng Biotechnol. 2023 Sep 14;11:1251879. doi: 10.3389/fbioe.2023.1251879. eCollection 2023.
2
Performance enhancement of the soft robotic segment for a trunk-like arm.
Front Robot AI. 2023 Jul 17;10:1210217. doi: 10.3389/frobt.2023.1210217. eCollection 2023.
4
4D Multiscale Origami Soft Robots: A Review.
Polymers (Basel). 2022 Oct 9;14(19):4235. doi: 10.3390/polym14194235.
5
A Multimodal Hydrogel Soft-Robotic Sensor for Multi-Functional Perception.
Front Robot AI. 2021 Aug 26;8:692754. doi: 10.3389/frobt.2021.692754. eCollection 2021.
6
Underwater Crawling Robot With Hydraulic Soft Actuators.
Front Robot AI. 2021 Aug 26;8:688697. doi: 10.3389/frobt.2021.688697. eCollection 2021.

本文引用的文献

2
Preliminary design and control of a soft exosuit for assisting elbow movements and hand grasping in activities of daily living.
J Rehabil Assist Technol Eng. 2017 Jan 1;4:2055668316680315. doi: 10.1177/2055668316680315. eCollection 2017 Jan-Dec.
4
Fluid-driven origami-inspired artificial muscles.
Proc Natl Acad Sci U S A. 2017 Dec 12;114(50):13132-13137. doi: 10.1073/pnas.1713450114. Epub 2017 Nov 27.
5
A soft wearable robot for the shoulder: Design, characterization, and preliminary testing.
IEEE Int Conf Rehabil Robot. 2017 Jul;2017:1672-1678. doi: 10.1109/ICORR.2017.8009488.
6
Modeling and design of a tendon actuated soft robotic exoskeleton for hemiparetic upper limb rehabilitation.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:3889-92. doi: 10.1109/EMBC.2015.7319243.
7
Quantifying forearm and wrist joint power during unconstrained movements in healthy individuals.
J Neuroeng Rehabil. 2014 Nov 17;11:157. doi: 10.1186/1743-0003-11-157.
8
Design and control of a bio-inspired soft wearable robotic device for ankle-foot rehabilitation.
Bioinspir Biomim. 2014 Mar;9(1):016007. doi: 10.1088/1748-3182/9/1/016007. Epub 2014 Jan 16.
9
Design of Wrist Gimbal: a forearm and wrist exoskeleton for stroke rehabilitation.
IEEE Int Conf Rehabil Robot. 2013 Jun;2013:6650459. doi: 10.1109/ICORR.2013.6650459.
10
Human-robot-interaction control for orthoses with pneumatic soft-actuators--concept and initial trails.
IEEE Int Conf Rehabil Robot. 2013 Jun;2013:6650353. doi: 10.1109/ICORR.2013.6650353.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验