Suppr超能文献

一种使用自适应空白极限和纠正假阳性事件的 ddPCR 数据自动校正算法(ALPACA)可提高突变检测的特异性。

An Automated Correction Algorithm (ALPACA) for ddPCR Data Using Adaptive Limit of Blank and Correction of False Positive Events Improves Specificity of Mutation Detection.

机构信息

Department of Laboratory Medicine, Netherlands Cancer Institute, Amsterdam, the Netherlands.

Biometrics Department, Netherlands Cancer Institute, Amsterdam, the Netherlands.

出版信息

Clin Chem. 2021 Jul 6;67(7):959-967. doi: 10.1093/clinchem/hvab040.

Abstract

BACKGROUND

Bio-Rad droplet-digital PCR is a highly sensitive method that can be used to detect tumor mutations in circulating cell-free DNA (cfDNA) of patients with cancer. Correct interpretation of ddPCR results is important for optimal sensitivity and specificity. Despite its widespread use, no standardized method to interpret ddPCR data is available, nor have technical artifacts affecting ddPCR results been widely studied.

METHODS

False positive rates were determined for 6 ddPCR assays at variable amounts of input DNA, revealing polymerase induced false positive events (PIFs) and other false positives. An in silico correction algorithm, known as the adaptive LoB and PIFs: an automated correction algorithm (ALPACA), was developed to remove PIFs and apply an adaptive limit of blank (LoB) to individual samples. Performance of ALPACA was compared to a standard strategy (no PIF correction and static LoB = 3) using data from commercial reference DNA, healthy volunteer cfDNA, and cfDNA from a real-life cohort of 209 patients with stage IV nonsmall cell lung cancer (NSCLC) whose tumor and cfDNA had been molecularly profiled.

RESULTS

Applying ALPACA reduced false positive results in healthy cfDNA compared to the standard strategy (specificity 98 vs 88%, P = 10-5) and stage IV NSCLC patient cfDNA (99 vs 93%, P = 10-11), while not affecting sensitivity in commercial reference DNA (70 vs 68% P = 0.77) or patient cfDNA (82 vs 88%, P = 0.13). Overall accuracy in patient samples was improved (98 vs 92%, P = 10-7).

CONCLUSIONS

Correction of PIFs and application of an adaptive LoB increases specificity without a loss of sensitivity in ddPCR, leading to a higher accuracy in a real-life cohort of patients with stage IV NSCLC.

摘要

背景

Bio-Rad 微滴式数字 PCR 是一种高度敏感的方法,可用于检测癌症患者循环游离 DNA(cfDNA)中的肿瘤突变。正确解释 ddPCR 结果对于获得最佳的灵敏度和特异性非常重要。尽管 ddPCR 已被广泛应用,但目前尚无标准化的方法来解释 ddPCR 数据,也没有广泛研究影响 ddPCR 结果的技术伪影。

方法

在不同量的输入 DNA 下,确定了 6 种 ddPCR 检测的假阳性率,揭示了聚合酶诱导的假阳性事件(PIFs)和其他假阳性。开发了一种称为自适应 LoB 和 PIFs 的校正算法(ALPACA)的计算机校正算法,用于去除 PIFs,并对单个样本应用自适应空白限(LoB)。使用来自商业参考 DNA、健康志愿者 cfDNA 和来自 209 名患有 IV 期非小细胞肺癌(NSCLC)的真实队列的 cfDNA 的数据,比较了 ALPACA 的性能与标准策略(不进行 PIF 校正和静态 LoB=3)。

结果

与标准策略相比,应用 ALPACA 可减少健康 cfDNA 中的假阳性结果(特异性 98%比 88%,P=10-5)和 IV 期 NSCLC 患者 cfDNA(99%比 93%,P=10-11),而不会影响商业参考 DNA(70%比 68%,P=0.77)或患者 cfDNA(82%比 88%,P=0.13)的敏感性。患者样本的整体准确性得到提高(98%比 92%,P=10-7)。

结论

校正 PIFs 和应用自适应 LoB 可提高 ddPCR 的特异性,而不会降低灵敏度,从而提高 IV 期 NSCLC 患者真实队列的准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验