Gene Regulation, i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
Wiley Interdiscip Rev RNA. 2021 Sep;12(5):e1653. doi: 10.1002/wrna.1653. Epub 2021 Apr 12.
Messanger RNA (mRNA) isoforms with alternative 3'-untranslated regions (3'-UTRs) are produced by alternative polyadenylation (APA), which occurs during transcription in most eukaryotic genes. APA fine-tunes gene expression in a cell-type- and cellular state-dependent manner. Selection of an APA site entails the binding of core cleavage and polyadenylation factors to a particular polyadenylation site localized in the pre-mRNA and is controlled by multiple regulatory determinants, including transcription, pre-mRNA cis-regulatory sequences, and protein factors. Alternative 3'-UTRs serve as platforms for specific RNA binding proteins and microRNAs, which regulate gene expression in a coordinated manner by controlling mRNA fate and function in the cell. Genome-wide studies illustrated the full extent of APA prevalence and revealed that specific 3'-UTR profiles are associated with particular cellular states and diseases. Generally, short 3'-UTRs are associated with proliferative and cancer cells, and long 3'-UTRs are mostly found in polarized and differentiated cells. Fundamental new insights on the physiological consequences of this widespread event and the molecular mechanisms involved have been revealed through single-cell studies. Publicly available comprehensive databases that cover all APA mRNA isoforms identified in many cellular states and diseases reveal specific APA signatures. Therapies tackling APA mRNA isoforms or APA regulators may be regarded as innovative and attractive tools for diagnostics or treatment of several pathologies. We highlight the function of APA and alternative 3'-UTRs in gene expression regulation, the control of these mechanisms, their physiological consequences, and their potential use as new biomarkers and therapeutic tools. This article is categorized under: RNA Processing > 3' End Processing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease.
信使 RNA (mRNA) 异构体具有不同的 3'非翻译区 (3'-UTR),这是通过在大多数真核基因转录过程中发生的选择性多聚腺苷酸化 (APA) 产生的。APA 以细胞类型和细胞状态依赖的方式精细调节基因表达。APA 位点的选择需要核心切割和多聚腺苷酸化因子与特定的多聚腺苷酸化位点结合,该位点定位于 pre-mRNA 中,并受多个调节决定因素控制,包括转录、pre-mRNA 顺式调节序列和蛋白质因子。选择性 3'-UTR 作为特定 RNA 结合蛋白和 microRNA 的平台,通过控制 mRNA 在细胞中的命运和功能,以协调的方式调节基因表达。全基因组研究说明了 APA 普遍性的全部程度,并揭示了特定的 3'-UTR 图谱与特定的细胞状态和疾病相关。通常,短 3'-UTR 与增殖和癌细胞相关,而长 3'-UTR 主要存在于极化和分化的细胞中。通过单细胞研究揭示了这一广泛事件的生理后果和涉及的分子机制的新的基本见解。涵盖许多细胞状态和疾病中鉴定的所有 APA mRNA 异构体的公共综合数据库揭示了特定的 APA 特征。针对 APA mRNA 异构体或 APA 调节剂的治疗方法可能被视为诊断或治疗多种病理的创新和有吸引力的工具。我们强调了 APA 和替代 3'-UTR 在基因表达调控中的功能、这些机制的控制、它们的生理后果以及它们作为新的生物标志物和治疗工具的潜在用途。本文归类于:RNA 加工 > 3' 末端加工 RNA 与蛋白质和其他分子的相互作用 > 蛋白质-RNA 相互作用:功能意义 RNA 在疾病与发育中的作用 > RNA 在疾病中的作用。