Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana.
Am J Physiol Endocrinol Metab. 2021 Jun 1;320(6):E1053-E1067. doi: 10.1152/ajpendo.00410.2020. Epub 2021 Apr 12.
Ketogenic diets (KDs) are reported to improve body weight, fat mass, and exercise performance in humans. Unfortunately, most rodent studies have used a low-protein KD, which does not recapitulate diets used by humans. Since skeletal muscle plays a critical role in responding to macronutrient perturbations induced by diet and exercise, the purpose of this study was to test if a normal-protein KD (NPKD) impacts shifts in skeletal muscle substrate oxidative capacity in response to exercise training (ExTr). A high fat, carbohydrate-deficient NPKD (16.1% protein, 83.9% fat, 0% carbohydrate) was given to C57BL/6J male mice for 6 wk, whereas controls (Con) received a low-fat diet with similar protein (15.9% protein, 11.9% fat, 72.2% carbohydrate). After 3 wk on the diet, mice began treadmill training 5 days/wk, 60 min/day for 3 wks. The NPKD increased body weight and fat mass, whereas ExTr negated a continued rise in adiposity. ExTr increased intramuscular glycogen, whereas the NPKD increased intramuscular triglycerides. Neither the NPKD nor ExTr alone altered mitochondrial content; however, in combination, the NPKD-ExTr group showed increases in PGC-1α and markers of mitochondrial fission/fusion. Pyruvate oxidative capacity was unchanged by either intervention, whereas ExTr increased leucine oxidation in NPKD-fed mice. Lipid metabolism pathways had the most notable changes as the NPKD and ExTr interventions both enhanced mitochondrial and peroxisomal lipid oxidation and many adaptations were additive or synergistic. Overall, these results suggest that a combination of a NPKD and ExTr induces additive and/or synergistic adaptations in skeletal muscle oxidative capacity. A ketogenic diet with normal protein content (NPKD) increases body weight and fat mass, increases intramuscular triglyceride storage, and upregulates pathways related to protein metabolism. In combination with exercise training, a NPKD induces additive and/or synergistic activation of AMPK, PGC-1α, mitochondrial fission/fusion genes, mitochondrial fatty acid oxidation, and peroxisomal adaptations in skeletal muscle. Collectively, results from this study provide mechanistic insight into adaptations in skeletal muscle relevant to keto-adaptation.
生酮饮食(KDs)据报道可改善人体的体重、体脂肪和运动表现。不幸的是,大多数啮齿动物研究都使用了低蛋白 KD,这并没有重现人类使用的饮食。由于骨骼肌在响应饮食和运动引起的宏量营养素干扰方面起着至关重要的作用,因此本研究的目的是测试正常蛋白 KD(NPKD)是否会影响运动训练(ExTr)后骨骼肌底物氧化能力的变化。6 周内,C57BL/6J 雄性小鼠给予高脂肪、碳水化合物缺乏的 NPKD(16.1%蛋白、83.9%脂肪、0%碳水化合物),而对照(Con)组则给予具有相似蛋白(15.9%蛋白、11.9%脂肪、72.2%碳水化合物)的低脂饮食。饮食 3 周后,小鼠开始每周 5 天、每天 60 分钟的跑步机训练 3 周。NPKD 增加了体重和体脂肪,而 ExTr 则阻止了肥胖的持续增加。ExTr 增加了肌肉内糖原,而 NPKD 则增加了肌肉内甘油三酯。NPKD 或 ExTr 单独均未改变线粒体含量;然而,两者结合时,NPKD-ExTr 组显示出 PGC-1α 和线粒体分裂/融合标志物的增加。丙酮酸氧化能力不受任何干预的影响,而 ExTr 增加了 NPKD 喂养小鼠的亮氨酸氧化。脂质代谢途径的变化最为显著,因为 NPKD 和 ExTr 干预均增强了线粒体和过氧化物酶体的脂质氧化,并且许多适应是累加或协同的。总的来说,这些结果表明,NPKD 和 ExTr 的联合应用可引起骨骼肌氧化能力的累加和/或协同适应。含正常蛋白含量的生酮饮食(NPKD)增加体重和体脂肪,增加肌肉内甘油三酯储存,并上调与蛋白质代谢相关的途径。与运动训练相结合,NPKD 可累加和/或协同激活 AMPK、PGC-1α、线粒体分裂/融合基因、线粒体脂肪酸氧化和过氧化物酶体适应。总之,本研究的结果为与酮适应相关的骨骼肌适应提供了机制见解。