Suppr超能文献

CXCR4 允许 T 细胞急性淋巴细胞白血病通过 CNS 浸润逃避 JAK1/2 和 BCL2 的抑制。

CXCR4 allows T cell acute lymphoblastic leukemia to escape from JAK1/2 and BCL2 inhibition through CNS infiltration.

机构信息

Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.

Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.

出版信息

Leuk Lymphoma. 2021 May;62(5):1167-1177. doi: 10.1080/10428194.2021.1910684. Epub 2021 Apr 11.

Abstract

Targeting the JAK/STAT and BCL2 pathways in patients with relapsed/refractory T cell acute lymphoblastic leukemia (T-ALL) may provide an alternative approach to achieve clinical remissions. Ruxolitinib and venetoclax show a dose-dependent effect on T-ALL individually, but combination treatment reduces survival and proliferation of T-ALL . Using a xenograft model, the combination treatment fails to improve survival, with death from hind limb paralysis. Despite on-target inhibition by the drugs, histopathology demonstrates increased leukemic infiltration into the central nervous system (CNS) as compared to liver or bone marrow. Liquid chromatography-tandem mass spectroscopy shows that ruxolitinib and venetoclax insufficiently cross into the CNS. The addition of the CXCR4 inhibitor plerixafor with ruxolitinib and venetoclax reduces clinical scores and enhances survival. While combination therapy with ruxolitinib and venetoclax shows promise for treating T-ALL, additional inhibition of the CXCR4-CXCL12 axis may be needed to maximize the possibility of complete remission.

摘要

针对复发/难治性 T 细胞急性淋巴细胞白血病 (T-ALL) 患者的 JAK/STAT 和 BCL2 通路可能提供一种实现临床缓解的替代方法。鲁索利替尼和 Venetoclax 单独对 T-ALL 具有剂量依赖性作用,但联合治疗会降低 T-ALL 的存活率和增殖率。在异种移植模型中,联合治疗未能改善生存,导致后肢瘫痪死亡。尽管药物有靶向抑制作用,但组织病理学显示与肝或骨髓相比,白血病浸润中枢神经系统 (CNS) 增加。液相色谱-串联质谱显示,鲁索利替尼和 Venetoclax 不能充分进入 CNS。鲁索利替尼和 Venetoclax 联合 CXCR4 抑制剂plerixafor 可降低临床评分并提高生存率。虽然鲁索利替尼和 Venetoclax 的联合治疗对治疗 T-ALL 有一定的前景,但可能需要进一步抑制 CXCR4-CXCL12 轴以最大限度地提高完全缓解的可能性。

相似文献

1
CXCR4 allows T cell acute lymphoblastic leukemia to escape from JAK1/2 and BCL2 inhibition through CNS infiltration.
Leuk Lymphoma. 2021 May;62(5):1167-1177. doi: 10.1080/10428194.2021.1910684. Epub 2021 Apr 11.
3
Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP) acute lymphoblastic leukemia.
Blood. 2015 Mar 12;125(11):1759-67. doi: 10.1182/blood-2014-06-580480. Epub 2015 Feb 2.
5
JAK1/2 and BCL2 inhibitors synergize to counteract bone marrow stromal cell-induced protection of AML.
Blood. 2017 Aug 10;130(6):789-802. doi: 10.1182/blood-2016-02-699363. Epub 2017 Jun 15.
7
Clinical Experience With Venetoclax Combined With Chemotherapy for Relapsed or Refractory T-Cell Acute Lymphoblastic Leukemia.
Clin Lymphoma Myeloma Leuk. 2020 Apr;20(4):212-218. doi: 10.1016/j.clml.2019.09.608. Epub 2019 Sep 30.

引用本文的文献

1
CXCR Family and Hematologic Malignancies in the Bone Marrow Microenvironment.
Biomolecules. 2025 May 13;15(5):716. doi: 10.3390/biom15050716.
3
Cells and signals of the leukemic microenvironment that support progression of T-cell acute lymphoblastic leukemia (T-ALL).
Exp Mol Med. 2024 Nov;56(11):2337-2347. doi: 10.1038/s12276-024-01335-7. Epub 2024 Nov 1.
4
Macrophage-Based Therapeutic Strategies in Hematologic Malignancies.
Cancers (Basel). 2023 Jul 22;15(14):3722. doi: 10.3390/cancers15143722.
5
Combination fedratinib and venetoclax has activity against human B-ALL with high FLT3 expression.
bioRxiv. 2024 May 6:2023.06.07.544058. doi: 10.1101/2023.06.07.544058.
7
CXCR4 antagonists disrupt leukaemia-meningeal cell adhesion and attenuate chemoresistance.
Br J Haematol. 2023 May;201(3):459-469. doi: 10.1111/bjh.18607. Epub 2022 Dec 19.
8
Role and Mechanisms of Tumor-Associated Macrophages in Hematological Malignancies.
Front Oncol. 2022 Jul 7;12:933666. doi: 10.3389/fonc.2022.933666. eCollection 2022.
10
Janus Kinase Signaling: Oncogenic Criminal of Lymphoid Cancers.
Cancers (Basel). 2021 Oct 14;13(20):5147. doi: 10.3390/cancers13205147.

本文引用的文献

1
Different Human Immune Lineage Compositions Are Generated in Non-Conditioned NBSGW Mice Depending on HSPC Source.
Front Immunol. 2020 Oct 19;11:573406. doi: 10.3389/fimmu.2020.573406. eCollection 2020.
2
Development and validation of a sensitive UHPLC-MS/MS analytical method for venetoclax in mouse plasma, and its application to pharmacokinetic studies.
J Chromatogr B Analyt Technol Biomed Life Sci. 2020 Sep 1;1152:122176. doi: 10.1016/j.jchromb.2020.122176. Epub 2020 May 20.
3
Phenotype-based drug screening reveals association between venetoclax response and differentiation stage in acute myeloid leukemia.
Haematologica. 2020 Mar;105(3):708-720. doi: 10.3324/haematol.2018.214882. Epub 2019 Jul 11.
4
Strategies to Overcome Resistance Mechanisms in T-Cell Acute Lymphoblastic Leukemia.
Int J Mol Sci. 2019 Jun 20;20(12):3021. doi: 10.3390/ijms20123021.
5
Leukaemia hijacks a neural mechanism to invade the central nervous system.
Nature. 2018 Aug;560(7716):55-60. doi: 10.1038/s41586-018-0342-5. Epub 2018 Jul 18.
6
Inhibiting Janus Kinase 1 and BCL-2 to treat T cell acute lymphoblastic leukemia with IL7-Rα mutations.
Oncotarget. 2018 Apr 27;9(32):22605-22617. doi: 10.18632/oncotarget.25194.
7
Venetoclax-Rituximab in Chronic Lymphocytic Leukemia.
N Engl J Med. 2018 May 31;378(22):2143-2144. doi: 10.1056/NEJMc1805135.
8
Venetoclax-Rituximab in Relapsed or Refractory Chronic Lymphocytic Leukemia.
N Engl J Med. 2018 Mar 22;378(12):1107-1120. doi: 10.1056/NEJMoa1713976.
9
Extra-mitochondrial prosurvival BCL-2 proteins regulate gene transcription by inhibiting the SUFU tumour suppressor.
Nat Cell Biol. 2017 Oct;19(10):1226-1236. doi: 10.1038/ncb3616. Epub 2017 Sep 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验