Leibniz-Institut für Katalyse e. V., Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany.
Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, 311121, Hangzhou, P. R. China.
Chemistry. 2021 Jul 7;27(38):9768-9773. doi: 10.1002/chem.202100468. Epub 2021 Jun 14.
A novel ruthenium-catalyzed C-H activation methodology for hydrogen isotope exchange of aromatic carbonyl compounds is presented. In the presence of catalytic amounts of specific amine additives, a transient directing group is formed in situ, which directs selective deuteration. A high degree of deuteration is achieved for α-carbonyl and aromatic ortho-positions. In addition, appropriate choice of conditions allows for exclusive labeling of the α-carbonyl position while a procedure for the preparation of merely ortho-deuterated compounds is also reported. This methodology proceeds with good functional group tolerance and can be also applied for deuteration of pharmaceutical drugs. Mechanistic studies reveal a kinetic isotope effect of 2.2, showing that the C-H activation is likely the rate-determining step of the catalytic cycle. Using deuterium oxide as a cheap and convenient source of deuterium, the methodology presents a cost-efficient alternative to state-of-the-art iridium-catalyzed procedures.
本文提出了一种新型的钌催化 C-H 活化方法,用于芳香羰基化合物的氢同位素交换。在催化量的特定胺添加剂存在下,原位形成瞬态导向基团,从而导向选择性氘代。α-羰基和芳基邻位的氘代程度很高。此外,通过适当选择条件,可以实现仅对α-羰基位置的标记,同时还报道了一种仅制备邻位氘代化合物的方法。该方法具有良好的官能团耐受性,也可用于药物的氘代。机理研究表明,动力学同位素效应为 2.2,表明 C-H 活化可能是催化循环的速率决定步骤。使用重水作为廉价且方便的氘源,该方法为最先进的铱催化方法提供了一种具有成本效益的替代方案。