Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States.
Langmuir. 2021 Apr 27;37(16):4900-4912. doi: 10.1021/acs.langmuir.1c00138. Epub 2021 Apr 12.
Pattern formation and dynamic restructuring play a vital role in a plethora of natural processes. Understanding and controlling pattern formation in soft synthetic materials is important for imparting a range of biomimetic functionalities. Using a three-dimensional gel Lattice spring model, we focus on the dynamics of pattern formation and restructuring in thin thermoresponsive poly(-isopropylacrylamide) membranes under mechanical forcing via stretching and compression. A mechanical instability due to the constrained swelling of a polymer network in response to the temperature quench results in out-of-plane buckling of these membranes. The depth of the temperature quench and applied mechanical forcing affect the onset of buckling and postbuckling dynamics. We characterize formation and restructuring of buckling patterns under the stretching and compression by calculating the wavelength and the amplitude of these patterns. We demonstrate dynamic restructuring of the patterns under mechanical forcing and characterize the hysteresis behavior. Our findings show that in the range of the strain rates probed, the wavelength prescribed during the compression remains constant and independent of the sample widths, while the amplitude is regulated dynamically. We demonstrate that significantly smaller wavelengths can be prescribed and sustained dynamically than those achieved in equilibrium in the same systems. We show that an effective membrane thickness may decrease upon compression due to the out-of-plane deformations and pattern restructuring. Our findings point out that mechanical forcing can be harnessed to control the onset of buckling, postbuckling dynamics, and hysteresis phenomena in gel-based systems, introducing novel means of tailoring the functionality of soft structured surfaces and interfaces.
模式形成和动态重构在众多自然过程中起着至关重要的作用。理解和控制软合成材料中的模式形成对于赋予一系列仿生功能非常重要。我们使用三维凝胶格子弹簧模型,关注在机械拉伸和压缩作用下,热响应性聚(异丙基丙烯酰胺)薄膜中模式形成和重构的动力学。由于聚合物网络在响应温度淬火时的受限膨胀,会导致这些薄膜产生面外屈曲的机械不稳定性。温度淬火深度和施加的机械力会影响屈曲和后屈曲动力学的开始。我们通过计算这些图案的波长和振幅,来表征拉伸和压缩过程中屈曲图案的形成和重构。我们展示了在机械力作用下图案的动态重构,并对滞后行为进行了特征描述。我们的研究结果表明,在所研究的应变速率范围内,压缩过程中规定的波长在样品宽度不变的情况下保持恒定且独立,而振幅则是动态调节的。我们证明,在相同的系统中,与平衡状态相比,可以规定和动态维持更小的波长。我们还表明,由于面外变形和图案重构,有效膜厚可能会在压缩过程中减小。我们的研究结果指出,机械力可以被用来控制基于凝胶的系统中屈曲、后屈曲动力学和滞后现象的发生,为软结构表面和界面的功能定制引入了新的手段。