Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria.
Department of Mathematics and Statistics, McMaster University, Hamilton, Canada.
PLoS Comput Biol. 2021 Apr 12;17(4):e1008523. doi: 10.1371/journal.pcbi.1008523. eCollection 2021 Apr.
A game of rock-paper-scissors is an interesting example of an interaction where none of the pure strategies strictly dominates all others, leading to a cyclic pattern. In this work, we consider an unstable version of rock-paper-scissors dynamics and allow individuals to make behavioural mistakes during the strategy execution. We show that such an assumption can break a cyclic relationship leading to a stable equilibrium emerging with only one strategy surviving. We consider two cases: completely random mistakes when individuals have no bias towards any strategy and a general form of mistakes. Then, we determine conditions for a strategy to dominate all other strategies. However, given that individuals who adopt a dominating strategy are still prone to behavioural mistakes in the observed behaviour, we may still observe extinct strategies. That is, behavioural mistakes in strategy execution stabilise evolutionary dynamics leading to an evolutionary stable and, potentially, mixed co-existence equilibrium.
石头剪刀布游戏是一个有趣的互动例子,其中没有任何纯策略严格地支配所有其他策略,从而导致循环模式。在这项工作中,我们考虑了一种不稳定的石头剪刀布动力学版本,并允许个体在策略执行过程中犯行为错误。我们表明,这种假设可以打破循环关系,导致只有一种策略存活的稳定均衡出现。我们考虑了两种情况:当个体对任何策略都没有偏见时,行为错误是完全随机的,以及行为错误的一般形式。然后,我们确定了一种策略支配所有其他策略的条件。然而,由于采用支配策略的个体在观察到的行为中仍然容易犯行为错误,我们仍然可能观察到灭绝的策略。也就是说,策略执行中的行为错误稳定了进化动态,导致了进化稳定的、可能是混合共存的均衡。