Suppr超能文献

优化成像方法以鉴定食品污染甲虫的种属

Optimized imaging methods for species-level identification of food-contaminating beetles.

机构信息

Division of Bioinformatics and Biostatistics, National Center for Toxicological Research (NCTR), Food and Drug Administration (FDA), Jefferson, AR, 72079, USA.

Food Chemistry Laboratory-1, Arkansas Laboratory (ARKL), Office of Regulatory Sciences, Office of Regulatory Affairs (ORS/ORA), FDA, Jefferson, AR, 72079, USA.

出版信息

Sci Rep. 2021 Apr 12;11(1):7957. doi: 10.1038/s41598-021-86643-y.

Abstract

Identifying the exact species of pantry beetle responsible for food contamination, is imperative in assessing the risks associated with contamination scenarios. Each beetle species is known to have unique patterns on their hardened forewings (known as elytra) through which they can be identified. Currently, this is done through manual microanalysis of the insect or their fragments in contaminated food samples. We envision that the use of automated pattern analysis would expedite and scale up the identification process. However, such automation would require images to be captured in a consistent manner, thereby enabling the creation of large repositories of high-quality images. Presently, there is no standard imaging technique for capturing images of beetle elytra, which consequently means, there is no standard method of beetle species identification through elytral pattern analysis. This deficiency inspired us to optimize and standardize imaging methods, especially for food-contaminating beetles. For this endeavor, we chose multiple species of beetles belonging to different families or genera that have near-identical elytral patterns, and thus are difficult to identify correctly at the species level. Our optimized imaging method provides enhanced images such that the elytral patterns between individual species could easily be distinguished from each other, through visual observation. We believe such standardization is critical in developing automated species identification of pantry beetles and/or other insects. This eventually may lead to improved taxonomical classification, allowing for better management of food contamination and ecological conservation.

摘要

确定导致食物污染的储藏甲虫的确切物种,对于评估污染情景相关的风险至关重要。已知每种甲虫在前胸(称为鞘翅)上都有独特的图案,通过这些图案可以识别它们。目前,这是通过对受污染食物样本中的昆虫或其碎片进行手动微观分析来完成的。我们设想自动化模式分析的使用将加快并扩大鉴定过程。然而,这种自动化需要以一致的方式捕获图像,从而能够创建大量高质量图像的存储库。目前,还没有用于捕获甲虫鞘翅图像的标准成像技术,这意味着,通过鞘翅图案分析来鉴定甲虫物种没有标准方法。这一缺陷促使我们优化和标准化成像方法,特别是对于污染食物的甲虫。为此,我们选择了多个属于不同科或属的甲虫物种,它们的鞘翅图案非常相似,因此很难在物种水平上正确识别。我们优化的成像方法提供了增强的图像,使得通过肉眼观察,个体物种之间的鞘翅图案可以很容易地区分开来。我们相信这种标准化对于开发储藏甲虫和/或其他昆虫的自动化物种鉴定至关重要。这最终可能导致更精确的分类学分类,从而更好地管理食物污染和生态保护。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05e7/8041796/90f46fa2ba02/41598_2021_86643_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验