文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

染色体重排是 CRISPR-Cas9 基因组编辑的一种靶向后果。

Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing.

机构信息

Howard Hughes Medical Institute, Chevy Chase, MD, USA.

Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.

出版信息

Nat Genet. 2021 Jun;53(6):895-905. doi: 10.1038/s41588-021-00838-7. Epub 2021 Apr 12.


DOI:10.1038/s41588-021-00838-7
PMID:33846636
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8192433/
Abstract

Genome editing has therapeutic potential for treating genetic diseases and cancer. However, the currently most practicable approaches rely on the generation of DNA double-strand breaks (DSBs), which can give rise to a poorly characterized spectrum of chromosome structural abnormalities. Here, using model cells and single-cell whole-genome sequencing, as well as by editing at a clinically relevant locus in clinically relevant cells, we show that CRISPR-Cas9 editing generates structural defects of the nucleus, micronuclei and chromosome bridges, which initiate a mutational process called chromothripsis. Chromothripsis is extensive chromosome rearrangement restricted to one or a few chromosomes that can cause human congenital disease and cancer. These results demonstrate that chromothripsis is a previously unappreciated on-target consequence of CRISPR-Cas9-generated DSBs. As genome editing is implemented in the clinic, the potential for extensive chromosomal rearrangements should be considered and monitored.

摘要

基因组编辑在治疗遗传疾病和癌症方面具有治疗潜力。然而,目前最可行的方法依赖于 DNA 双链断裂 (DSB) 的产生,这可能导致染色体结构异常谱的特征不佳。在这里,我们使用模型细胞和单细胞全基因组测序,以及在临床相关细胞中对临床相关基因座进行编辑,表明 CRISPR-Cas9 编辑会产生核、微核和染色体桥的结构缺陷,从而引发一种称为染色体重排的突变过程。染色体重排是一种广泛的染色体重排,仅限于一个或几个染色体,可导致人类先天性疾病和癌症。这些结果表明,染色体重排是 CRISPR-Cas9 产生的 DSB 之前未被认识到的一种靶标后果。随着基因组编辑在临床上的实施,应该考虑和监测广泛的染色体重排的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/797b/8192433/b0b0efc3c3d1/nihms-1681626-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/797b/8192433/d986dd3bb9c4/nihms-1681626-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/797b/8192433/6e62dcd5f529/nihms-1681626-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/797b/8192433/622b0fbc7bee/nihms-1681626-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/797b/8192433/e8718ef28075/nihms-1681626-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/797b/8192433/85886f270062/nihms-1681626-f0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/797b/8192433/80067675f541/nihms-1681626-f0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/797b/8192433/812d4952a1a9/nihms-1681626-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/797b/8192433/4bf437d75283/nihms-1681626-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/797b/8192433/05c28988244d/nihms-1681626-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/797b/8192433/e3ff12ca93b8/nihms-1681626-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/797b/8192433/b0b0efc3c3d1/nihms-1681626-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/797b/8192433/d986dd3bb9c4/nihms-1681626-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/797b/8192433/6e62dcd5f529/nihms-1681626-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/797b/8192433/622b0fbc7bee/nihms-1681626-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/797b/8192433/e8718ef28075/nihms-1681626-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/797b/8192433/85886f270062/nihms-1681626-f0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/797b/8192433/80067675f541/nihms-1681626-f0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/797b/8192433/812d4952a1a9/nihms-1681626-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/797b/8192433/4bf437d75283/nihms-1681626-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/797b/8192433/05c28988244d/nihms-1681626-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/797b/8192433/e3ff12ca93b8/nihms-1681626-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/797b/8192433/b0b0efc3c3d1/nihms-1681626-f0005.jpg

相似文献

[1]
Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing.

Nat Genet. 2021-6

[2]
CRISPRthripsis: The Risk of CRISPR/Cas9-induced Chromothripsis in Gene Therapy.

Stem Cells Transl Med. 2022-10-21

[3]
CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations.

Nat Commun. 2019-3-8

[4]
CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response.

Nat Med. 2018-6-11

[5]
The Fanconi anemia pathway induces chromothripsis and ecDNA-driven cancer drug resistance.

Cell. 2024-10-17

[6]
Optimization of CRISPR/Cas9 Delivery to Human Hematopoietic Stem and Progenitor Cells for Therapeutic Genomic Rearrangements.

Mol Ther. 2018-10-17

[7]
Non-homologous end joining shapes the genomic rearrangement landscape of chromothripsis from mitotic errors.

Nat Commun. 2024-7-4

[8]
A novel Cas9 fusion protein promotes targeted genome editing with reduced mutational burden in primary human cells.

Nucleic Acids Res. 2023-5-22

[9]
CRISPR-Cas9; an efficient tool for precise plant genome editing.

Mol Cell Probes. 2018-4-3

[10]
A glance at genome editing with CRISPR-Cas9 technology.

Curr Genet. 2020-6

引用本文的文献

[1]
The Evolutionary Potential of Chromoanagenesis.

Methods Mol Biol. 2025

[2]
Chromosomal Instability and Chromoanagenesis as Forces for Genomic Evolution.

Methods Mol Biol. 2025

[3]
DNA Damage, Telomere and Centromere Dysfunction in Chromothripsis Rearrangements.

Methods Mol Biol. 2025

[4]
Transcription-Replication Conflicts and Incomplete Replication as a Cause of Micronuclei-Driven Chromoanagenesis.

Methods Mol Biol. 2025

[5]
Origin and Fate of Micronuclei on the Road to Chromoanagenesis.

Methods Mol Biol. 2025

[6]
Chromothripsis.

Methods Mol Biol. 2025

[7]
CRISPR tools for T cells: targeting the genome, epigenome, and transcriptome.

Trends Cancer. 2025-8-28

[8]
Programmable epigenome editing by transient delivery of CRISPR epigenome editor ribonucleoproteins.

Nat Commun. 2025-8-26

[9]
Structure-guided engineering of type I-F CASTs for targeted gene insertion in human cells.

Nat Commun. 2025-8-23

[10]
Controlling CRISPR-Cas9 genome editing in human cells using a molecular glue degrader.

Mol Ther Nucleic Acids. 2025-7-21

本文引用的文献

[1]
Frequent loss of heterozygosity in CRISPR-Cas9-edited early human embryos.

Proc Natl Acad Sci U S A. 2021-6-1

[2]
CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia.

N Engl J Med. 2021-1-21

[3]
Allele-Specific Chromosome Removal after Cas9 Cleavage in Human Embryos.

Cell. 2020-12-10

[4]
Editing a γ-globin repressor binding site restores fetal hemoglobin synthesis and corrects the sickle cell disease phenotype.

Sci Adv. 2020-2

[5]
BCL11A enhancer-edited hematopoietic stem cells persist in rhesus monkeys without toxicity.

J Clin Invest. 2020-12-1

[6]
APOBEC3-dependent kataegis and TREX1-driven chromothripsis during telomere crisis.

Nat Genet. 2020-7-27

[7]
Detection of Deleterious On-Target Effects after HDR-Mediated CRISPR Editing.

Cell Rep. 2020-5-26

[8]
Cas9 activates the p53 pathway and selects for p53-inactivating mutations.

Nat Genet. 2020-5-18

[9]
Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer.

Nat Med. 2020-4-27

[10]
Mechanisms generating cancer genome complexity from a single cell division error.

Science. 2020-4-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索