Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
Acc Chem Res. 2021 May 4;54(9):2313-2322. doi: 10.1021/acs.accounts.1c00144. Epub 2021 Apr 13.
Life emerges from complicated and sophisticated chemical networks comprising numerous biomolecules (e.g., nucleic acids, proteins, sugars, and lipids) and chemical reactions catalyzed by enzymes. Dysregulation of these chemical networks is linked to the emergence of diseases. Our research goal is to develop abiotic chemical catalysts that can intervene into life's chemical networks by complementing, surrogating, or exceeding enzymes in living cells or multicellular organisms such as animals or plants. Mending dysregulated networks in pathological states by the chemical catalysts will lead to a new medicinal strategy, catalysis medicine. This research direction will also advance catalysis science, because highly active and selective chemical catalysts must be developed to promote the intended reactions in a complex mixture of life in aqueous solution at body temperature.Epigenetics exists at the crossroads of chemistry, biology, and medicine and is a suitable field to pursue this idea. Post-translational modifications (PTMs) of histones epigenetically regulate chromatin functions and gene transcription and are intimately related to various diseases. Investigating the functions and cross-talk of histone PTMs is crucial for mechanistic elucidation of diseases and their treatments. We launched a program to develop chemical catalysts enabling endogenous histone modifications in living cells without relying on enzymes. We reported two types of chemical catalyst systems so far for synthetic histone acylation. The first system comprised a DNA-binding oligo-4-dimethylaminopyridine (DMAP) catalyst and a phenyl ester acyl donor, PAc-gly. This system promoted histone hyperacetylation in sperm chromatin. Using the thus-synthesized hyperacetylated sperm chromatin, we found a novel relationship between histone acetylation and DNA replication. The second system involved a histone-binding catalyst, LANA-DSH, composed of a catalytic motif (DSH) and a histone-binding peptide ligand (LANA), and thioester acyl donors, including endogenous acyl-CoA. This system regioselectively (i.e., selectively to a lysine residue at a specific position) acylated lysine 120 of histone H2B (H2BK120), a lysine residue proximal to the DSH motif defined by binding of the LANA ligand to a nucleosome substrate. This catalyst system was optimized to achieve H2BK120-selective acetylation in living cells without genetic manipulation. The synthetically introduced H2BK120Ac inhibited enzyme-catalyzed ubiquitination at the same lysine residue, acting as a protecting group. H2BK120Ub is a mark recognized by methyltransferase that plays an essential role in mixed-lineage leukemia (MLL)-rearranged leukemia, suggesting the potential of the catalyst system as an epigenetic tool and a cancer therapy. We also discuss the prospects of chemical catalyst-promoted synthetic epigenetics for future PTM studies and therapeutic uses.
生命源自于复杂而精巧的化学网络,这些网络由众多生物分子(如核酸、蛋白质、糖和脂质)以及酶催化的化学反应组成。这些化学网络的失调与疾病的发生有关。我们的研究目标是开发非生物化学催化剂,这些催化剂可以通过在活细胞或多细胞生物(如动物或植物)中补充、替代或超越酶来干预生命的化学网络。通过化学催化剂修复病理状态下失调的网络,将产生一种新的医学策略,即催化医学。这一研究方向还将推动催化科学的发展,因为必须开发高活性和选择性的化学催化剂,以促进在体温下水溶液中复杂的生命混合物中的预期反应。表观遗传学存在于化学、生物学和医学的交叉点,是追求这一理念的合适领域。组蛋白的翻译后修饰(PTMs)表观调控染色质功能和基因转录,与各种疾病密切相关。研究组蛋白 PTM 的功能和串扰对于疾病的发病机制阐明及其治疗至关重要。我们启动了一个项目,开发能够在活细胞中无需依赖酶就能进行内源性组蛋白修饰的化学催化剂。目前,我们已经报道了两种用于合成组蛋白酰化的化学催化剂体系。第一个体系包含一个 DNA 结合寡聚体-4-二甲氨基吡啶(DMAP)催化剂和一个苯酯酰供体,PAc-gly。该体系促进了精子染色质的组蛋白过度乙酰化。利用如此合成的过度乙酰化的精子染色质,我们发现了组蛋白乙酰化与 DNA 复制之间的一种新关系。第二个体系涉及一个由催化基序(DSH)和组蛋白结合肽配体(LANA)组成的组蛋白结合催化剂 LANA-DSH,以及包括内源性酰基辅酶 A 在内的硫酯酰供体。该体系对组蛋白 H2B 上赖氨酸 120 (H2BK120)进行了区域选择性(即,仅针对特定位置的赖氨酸残基)酰化,H2BK120 位于 LANA 配体与核小体底物结合所定义的 DSH 基序的附近。该催化剂体系经优化后,无需遗传操作即可在活细胞中实现 H2BK120 选择性乙酰化。引入的 H2BK120Ac 抑制了同一赖氨酸残基上酶催化的泛素化,起到保护基团的作用。H2BK120Ub 是一种被甲基转移酶识别的标记,在混合谱系白血病(MLL)重排白血病中发挥着重要作用,这表明该催化剂体系作为一种表观遗传工具和癌症治疗方法具有潜在的应用前景。我们还讨论了化学催化剂促进的合成表观遗传学在未来 PTM 研究和治疗应用中的前景。