Department of Mathematics, University of Warwick, Coventry CV4 7AL, UK.
Simons Center for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore 560065, India.
J R Soc Interface. 2021 Apr;18(177):20210114. doi: 10.1098/rsif.2021.0114. Epub 2021 Apr 14.
We study the collective dynamics of groups of whirligig beetles swimming freely on the surface of water. We extract individual trajectories for each beetle, including positions and orientations, and use this to discover (i) a density-dependent speed scaling like ∼ with ≈ 0.4 over two orders of magnitude in density (ii) an inertial delay for velocity alignment of approximately 13 ms and (iii) coexisting high and low-density phases, consistent with motility-induced phase separation (MIPS). We modify a standard active Brownian particle (ABP) model to a corralled ABP (CABP) model that functions in open space by incorporating a density-dependent reorientation of the beetles, towards the cluster. We use our new model to test our hypothesis that an motility-induced phase separation (MIPS) (or a MIPS like effect) can explain the co-occurrence of high- and low-density phases we see in our data. The fitted model then successfully recovers a MIPS-like condensed phase for = 200 and the absence of such a phase for smaller group sizes = 50, 100.
我们研究了在水面自由游动的旋转甲虫群体的集体动力学。我们提取了每只甲虫的个体轨迹,包括位置和方向,并利用这些轨迹发现了:(i) 一种密度依赖性的速度缩放规律,类似于 ∼ ,其中 ≈ 0.4,跨越了两个数量级的密度范围;(ii) 速度对齐的惯性延迟约为 13 毫秒;(iii) 共存的高密度和低密度相,与运动诱导相分离(MIPS)一致。我们将标准的活性布朗粒子(ABP)模型修改为约束 ABP(CABP)模型,该模型通过引入甲虫对集群的密度依赖性重新定向,在开放空间中发挥作用。我们使用新模型来检验我们的假设,即运动诱导相分离(MIPS)(或类似 MIPS 的效应)可以解释我们在数据中观察到的高密度和低密度相的共存。拟合模型成功地恢复了 = 200 时类似 MIPS 的凝聚相,而在较小的群体规模 = 50、100 时则不存在这种相。